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Overview

Synchronization methods
Shared memory based synchronization

• Semaphores  C, POSIX — Dijkstra

• Conditional critical regions   Edison (experimental)

• Monitors  Modula-1, Mesa — Dijkstra, Hoare, …

• Mutexes & conditional variables  POSIX

• Synchronized methods  Java, C#, …

• Protected objects  Ada

• Atomic blocks  Chapel, X10

Message based synchronization
• Asynchronous messages  e.g. POSIX, …

• Synchronous messages  e.g. Ada, CHILL, Occam2, …

• Remote invocation, remote procedure call  e.g. Ada, …
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Motivation

Side effects
Operations have side effects which are visible …

either
 … locally only

(and protected by runtime-, os-, or hardware-mechanisms)

or
 … outside the current process

 If side effects transcend the local process then all 
forms of access need to be synchronized.
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Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

What's the worst that can happen?
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Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

 Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic

… yet perhaps it is an 8-bit integer.
 Unaligned manipulations on the main memory will usually not be atomic

… yet perhaps it is a aligned.
 Broken down to a load-operate-store cycle, the operations will usually not be atomic

… yet perhaps the processor supplies atomic operations for the actual case.
 Many schedulers interrupt threads irrespective of shared data operations

… yet perhaps this scheduler is aware of the shared data.
 Local caches might not be coherent

… yet perhaps they are.
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Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

 Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic

… yet perhaps it is an 8-bit integer.
 Unaligned manipulations on the main memory will usually not be atomic

… yet perhaps it is a aligned.
 Broken down to a load-operate-store cycle, the operations will usually not be atomic

… yet perhaps the processor supplies atomic operations for the actual case.
 Many schedulers interrupt threads irrespective of shared data operations

… yet perhaps this scheduler is aware of the shared data.
 Local caches might not be coherent

… yet perhaps they are.
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… yet perhaps the processor supplies atomic operation
s interrupt threads irres ti f h d d

Even if all assumptions hold: 

How to expand this code?
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Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

 The chances that such programming errors turn out are usually small and some im-
plicit by chance synchronization in the rest of the system might prevent them at all.

(Many effects stemming from asynchronous memory accesses are interpreted 
as (hardware) ‘glitches’, since they are usually rare, yet often disastrous.)

 On assembler level on very simple CPU architectures: synchronization by 
employing knowledge about the atomicity of CPU-operations and inter-
rupt structures is nevertheless possible and utilized in practice.

In anything higher than assembler level on single core, predictable µ-controllers:

 Measures for synchronization are required!
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Towards synchronization

Condition synchronization by fl ags

Assumption: word-access atomicity:

i.e. assigning two values (not wider than the size of a ‘word’) 
to an aligned memory cell concurrently:

x := 0   |   x := 500

will result in either x = 0 or x = 500 – and no other value is ever observable
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Towards synchronization

Condition synchronization by fl ags

Assuming further that there is a shared memory area between two processes:

• A set of processes agree on a (word-size) atomic variable operating 
as a fl ag to indicate synchronization conditions:
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Towards synchronization

process P1;
  statement X;

  repeat until Flag;

  statement Y;
end P1;

process P2;
  statement A;

  Flag := true;

  statement B;
end P2;

Condition synchronization by fl ags

var Flag : boolean := false;

Sequence of operations: A B< ; X A Y<;6 @ ; ,X Y B;6 @
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Towards synchronization

Condition synchronization by fl ags

Assuming further that there is a shared memory area between two processes:

• A set of processes agree on a (word-size) atomic variable operating 
as a fl ag to indicate synchronization conditions:

Memory fl ag method is ok for simple condition synchronization, but …

 … is not suitable for general mutual exclusion in critical sections!

 … busy-waiting is required to poll the synchronization condition!

 More powerful synchronization operations 
are required for critical sections
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Basic synchronization

by Semaphores
Basic defi nition (Dijkstra 1968)

Assuming the following three conditions on a shared memory cell between processes:

• a set of processes agree on a variable S operating as a 
fl ag to indicate synchronization conditions

• an atomic operation P on S — for ‘passeren’ (Dutch for ‘pass’):

P(S): [as soon as S > 0 then S := S - 1]  this is a potentially delaying operation

aka: ‘Wait’, ‘Suspend_Until_True’, ‘sem_wait’, …

• an atomic operation V on S — for ‘vrygeven’ (Dutch for ‘to release’):

V(S): [S := S + 1]

aka ‘Signal’, ‘Set-True’, ‘sem_post’, …

 then the variable S is called a Semaphore.
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Towards synchronization

process P1;
  statement X;

  wait (sync)

  statement Y;
end P1;

process P2;
  statement A;

  signal (sync);

  statement B;
end P2;

Condition synchronization by semaphores

var sync : semaphore := 0;

Sequence of operations: A B< ; X A Y<;6 @ ; ,X Y B;6 @
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Towards synchronization

process P1;
  statement X;

  wait (mutex);
    statement Y;
  signal (mutex);

  statement Z;
end P1;

process P2;
  statement A;

  wait (mutex);
    statement B;
  signal (mutex);

  statement C;
end P2;

Mutual exclusion by semaphores

var mutex : semaphore := 1;

Sequence of operations:
A B C< < ; X Y Z< < ; , , ,X Z A B C;6 @; , , ,A C X Y Z;6 @; B YJ ;6 @
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Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is

  type Suspension_Object is limited private;

  procedure Set_True           (S : in out Suspension_Object);
  procedure Set_False          (S : in out Suspension_Object);
  function  Current_State      (S :        Suspension_Object) return Boolean;
  procedure Suspend_Until_True (S : in out Suspension_Object);

private
  … ------ not specified by the language
end Ada.Synchronous_Task_Control;

only one task can be blocked at Suspend_Until_True! 
(Program_Error will be raised with a second task trying to suspend itself)

 no queues!  minimal run-time overhead

 This is "queueless" and can translate 

into a single machine instruction.
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Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is

  type Suspension_Object is limited private;

  procedure Set_True           (S : in out Suspension_Object);
  procedure Set_False          (S : in out Suspension_Object);
  function  Current_State      (S :        Suspension_Object) return Boolean;
  procedure Suspend_Until_True (S : in out Suspension_Object);

private
  … ------ not specified by the language
end Ada.Synchronous_Task_Control;

only one task can be blocked at Suspend_Until_True! 
(Program_Error will be raised with a second task trying to suspend itself)

 no queues!  minimal run-time overhead

chronous_Task_Control is

Obj t i li it d private;

out Suspension_Object);
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 for special cases only … otherwise:
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Towards synchronization

Malicious use of "queueless semaphores"
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X : Suspension_Object;

task B;
task body B is
begin
  …
  Suspend_Until_True (X);
  …
  …
end B;

task A;
task body A is
begin
  …
  Suspend_Until_True (X);
  …
  …
end A;

 Could raise a Program_Error as multiple tasks potentially suspend on the same semaphore
(occurs only with high effi ciency semaphores which do not provide process queues)
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Towards synchronization

Malicious use of "queueless semaphores"
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X, Y : Suspension_Object;

task B;
task body B is
begin
  …
  Suspend_Until_True (Y);
  Set_True (X);
  …
end B;

task A;
task body A is
begin
  …
  Suspend_Until_True (X);
  Set_True (Y);
  …
end A;

 Will result in a deadlock (assuming no other Set_True calls)
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Towards synchronization

Malicious use of "queueless semaphores"
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X, Y : Suspension_Object;

task B;
task body B is
begin
  …
  Suspend_Until_True (Y);
  Suspend_Until_True (X);
  …
end B;

task A;
task body A is
begin
  …
  Suspend_Until_True (X);
  Suspend_Until_True (Y);
  …
end A;

 Will potentially result in a deadlock (with general semaphores) 
or a Program_Error in Ada.
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Towards synchronization

Semaphores in POSIX

int sem_init      (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy   (sem_t *sem_location);

int sem_wait      (sem_t *sem_location);
int sem_trywait   (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post      (sem_t *sem_location);

int sem_getvalue  (sem_t *sem_location, int *value);

pshared is actually a Boolean indicating whether the 

semaphore is to be shared between processes

aarrrre

tioonaal UUniversity page 274 ofy 758 (chapter 3: “Communication & Synchronization” u8tioionalllll UUUUUnUniiiiiviver iisitty page 274 ofy 758 (chapter 3: “Communication & Synchronization” u8

*value indicates the number of waiting processes as a 

negative integer in case the semaphore value is zero
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Towards synchronization

Semaphores in POSIX
sem_t mutex, cond[2];
typedef emun {low, high} priority_t;
int waiting;
int busy;

void allocate (priority_t P)
{ 
  sem_wait (&mutex);
  if (busy) {
    sem_post (&mutex);
    sem_wait (&cond[P]);
  }
  busy = 1;
  sem_post (&mutex);
}

void deallocate (priority_t P)
{ 
  sem_wait (&mutex);
  busy = 0;
  sem_getvalue (&cond[high], &waiting);
  if (waiting < 0) {
    sem_post (&cond[high]);
  }
  else {
    sem_getvalue (&cond[low], &waiting);
    if (waiting < 0) {
      sem_post (&cond[low]);
    }
    else {
      sem_post (&mutex);
} } }

 
 
 

   

  

Deadlock?

Livelock?

Mutual exclusion?
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Towards synchronization

Semaphores in Java (since 2004)

Semaphore (int permits, boolean fair)

          void    acquire                ()
          void    acquire                (int permits)
          void    acquireUninterruptibly (int permits)
          boolean tryAcquire             ()
          boolean tryAcquire             (int permits, long timeout, TimeUnit unit) 

          int     availablePermits       ()
protected void    reducePermits          (int reduction)
          int     drainPermits           ()

          void    release                ()
          void    release                (int permits)

protected Collection <Thread> getQueuedThreads ()
          int     getQueueLength         ()
          boolean hasQueuedThreads       ()
          boolean isFair                 ()
          String  toString               ()

wait

signal

check and manipulate

administration

}}
gggg ong tgg
}
nnggggggn
}
nnggggggng

}}

}}
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Towards synchronization

Review of semaphores
• Semaphores are not bound to any resource or method or region

 Compiler has no idea what is supposed to be protected by a semaphore.

• Semaphores are scattered all over the code

 Hard to read and highly error-prone.

 Adding or deleting a single semaphore operation usually stalls a whole system.

 Semaphores are generally considered 
inadequate for non-trivial systems.

(all concurrent languages and environments offer 
effi cient and higher-abstraction synchronization methods)

 Special (usually close-to-hardware) applications exist.
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Distributed synchronization

Conditional Critical Regions

Basic idea:

• Critical regions are a set of associated code sections in different processes, 
which are guaranteed to be executed in mutual exclusion:

• Shared data structures are grouped in named regions 
and are tagged as being private resources.

• Processes are prohibited from entering a critical region, 
when another process is active in any associated critical region.

• Condition synchronisation is provided by guards:

• When a process wishes to enter a critical region it evaluates the guard (under mu-
tual exclusion). If the guard evaluates to false, the process is suspended / delayed.

• Generally, no access order can be assumed  potential livelocks
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Distributed synchronization

process producer;

  loop

    region critial_buffer_region
      when buffer.size < N do
        ------ place in buffer etc.
    end region;

  end loop;
end producer;

process consumer;

  loop

    region critial_buffer_region
      when buffer.size > 0 do
        ------ take from buffer etc.
    end region;

  end loop;
end consumer;

Conditional Critical Regions

buffer : buffer_t;
resource critial_buffer_region : buffer;
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Distributed synchronization

Review of Conditional Critical Regions

• Well formed synchronization blocks and synchronization conditions.

• Code, data and synchronization primitives are associated (known to compiler and runtime).

• All guards need to be re-evaluated, when any conditional critical region is left:

 all involved processes are activated to test their guards

 there is no order in the re-evaluation phase  potential livelocks

• Condition synchronisation inside the critical code sections
requires to leave and re-enter a critical region.

• As with semaphores the conditional critical regions are distributed all over the code.

 on a larger scale: same problems as with semaphores.

(The language Edison (Per Brinch Hansen, 1981) uses conditional critical regions for synchroniz-
ation in a multiprocessor environment (each process is associated with exactly one processor).)
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Centralized synchronization

Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:

• Collect all operations and data-structures shared in critical regions in one place, the monitor.

• Formulate all operations as procedures or functions.

• Prohibit access to data-structures, other than by the monitor-procedures and functions.

• Assure mutual exclusion of all monitor-procedures and functions.
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Centralized synchronization

Monitors

monitor buffer;

  export append, take;

  var (* declare protected vars *)

  procedure append (I : integer);
    …

  procedure take (var I : integer);
    …
begin
  (* initialisation *)
end;

How to implement 

conditional synchronization?



Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 283 of  758  (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors with condition synchronization
(Hoare ‘74)

Hoare-monitors:

• Condition variables are implemented by semaphores (Wait and Signal).

• Queues for tasks suspended on condition variables are realized.

• A suspended task releases its lock on the monitor, enabling another task to enter.

 More effi cient evaluation of the guards: 
the task leaving the monitor can evaluate all guards and the right tasks can be activated.

 Blocked tasks may be ordered and livelocks prevented.
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Centralized synchronization

Monitors with condition synchronization
monitor buffer;

  export append, take;

  var BUF                       : array [ … ] of integer;
  top, base                     : 0..size-1;
  NumberInBuffer                : integer;
  spaceavailable, itemavailable : condition;

  procedure append (I : integer);
  begin
    if NumberInBuffer = size then
      wait (spaceavailable);
    end if;
    BUF [top] := I; 
    NumberInBuffer := NumberInBuffer + 1;
    top := (top + 1) mod size;
    signal (itemavailable)
  end append; …
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Centralized synchronization

Monitors with condition synchronization
…
  procedure take (var I : integer);
  begin
    if NumberInBuffer = 0 then
      wait (itemavailable);
    end if;
    I := BUF[base];
    base := (base+1) mod size;
    NumberInBuffer := NumberInBuffer-1;
    signal (spaceavailable);
  end take;
begin (* initialisation *)
  NumberInBuffer := 0;
  top            := 0; 
  base           := 0
end;

The signalling and the

waiting process are both

active in the monitor!



Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 286 of  758  (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.

• A signal operation has the side-effect of executing a return statement.

• Hoare, Modula-1, POSIX: 
a signal operation which unblocks another process has the side-effect of blocking the cur-
rent process; this process will only execute again once the monitor is unlocked again.

• A signal operation which unblocks a process does not block the caller, 
but the unblocked process must re-gain access to the monitor.
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Centralized synchronization

Monitors in Modula-1

• procedure wait (s, r): 
delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

• procedure send (s): 
If a process is waiting for the condition variable s, then the process at the top of 
the queue of the highest fi lled rank is activated (and the caller suspended).

• function awaited (s) return integer: 
check for waiting processes on s.
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Centralized synchronization

Monitors in Modula-1
INTERFACE MODULE resource_control;

  DEFINE allocate, deallocate;

  VAR busy : BOOLEAN; free : SIGNAL;

  PROCEDURE allocate;
  BEGIN
    IF busy THEN WAIT (free) END;
    busy := TRUE;
  END;

  PROCEDURE deallocate;
  BEGIN
    busy := FALSE;
    SEND (free); ------ or: IF AWAITED (free) THEN SEND (free);
  END;

BEGIN
  busy := false;
END.
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Centralized synchronization

Monitors in POSIX (‘C’)
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init    (      pthread_mutex_t     *mutex,
                           const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (      pthread_mutex_t     *mutex);

int pthread_cond_init     (      pthread_cond_t      *cond,
                           const pthread_condattr_t  *attr);
int pthread_cond_destroy  (      pthread_cond_t      *cond);
…
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Centralized synchronization

Monitors in POSIX (‘C’)
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init    (      pthread_mutex_t     *mutex,
                           const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (      pthread_mutex_t     *mutex);

int pthread_cond_init     (      pthread_cond_t      *cond,
                           const pthread_condattr_t  *attr);
int pthread_cond_destroy  (      pthread_cond_t      *cond);
…

ad
ad
ad

ad
ad
ad

)

dd___mutex_t     *mutex,
d___mutexattr_t *attr);
d___mutex_t     *mutex);

d_____cond_t      *cond,
d____condattr_t  *attr);
d____cond_t      *cond);

Attributes include:

• semantics for trying to lock a mutex which 

is locked already by the same thread

• sharing of mutexes and 

condition variables between processes

• priority ceiling

• clock used for timeouts

• … 



Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 291 of  758  (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in POSIX (‘C’)
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init    (      pthread_mutex_t     *mutex,
                           const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (      pthread_mutex_t     *mutex);

int pthread_cond_init     (      pthread_cond_t      *cond,
                           const pthread_condattr_t  *attr);
int pthread_cond_destroy  (      pthread_cond_t      *cond);
…

Undefi ned while locked

r_t;

 (      ppthre
 cccccccoooooooonnst pthre
(((( pthre

291 f 758 ( h 3 “C i i & S8291 f 58 ( h 3 “C i i & S8

Undefi ned while threads are waiting

((
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Centralized synchronization

Monitors in POSIX (‘C’)
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t *mutex,
                             const struct timespec *abstime);

int pthread_mutex_unlock    (      pthread_mutex_t *mutex);

int pthread_cond_wait       (      pthread_cond_t  *cond,
                                   pthread_mutex_t *mutex);
int pthread_cond_timedwait  (      pthread_cond_t  *cond,
                                   pthread_mutex_t *mutex,
                             const struct timespec *abstime);

int pthread_cond_signal     (      pthread_cond_t  *cond);
int pthread_cond_broadcast  (      pthread_cond_t  *cond);

    ppppppthrreeaaadddd____cccccooooooonnnnnnndddddddd_______tttttttttt  *******ccccccccccccccccoooooooooooooooonnnnnnnnnnnnnnnnddddddddddddddddddd,,,,,,,
h

    pppppttttthhhhhrrrreeeeaaaaaddddd_cccooonnnddddd_tttt  ***ccoonddd,
    pthread_mutex_t *mutex);

pthread cond t * d

unblocks ‘at least one’ thread

(
        
  cccccons

eeaadd cond t *cond);eeeeeeeeeeaaaaaaaaaddddddddddddddddddd cccccccooooooonnnnndddddddddddd tttttttttt ****ccoonddddddd))))));

r
u
rrreeeeeaaaaadddd_mmmuuutttteeexxx_ttt ***mmutttex,
uccct timespec *abstime);

,
d
unblocks all threads

(       pppppppttttttthhhhhhhrre
(((((((((((((      pthre
( rreerrrreeeeeeeee
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Centralized synchronization

Monitors in POSIX (‘C’)
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t *mutex,
                             const struct timespec *abstime);

int pthread_mutex_unlock    (      pthread_mutex_t *mutex);

int pthread_cond_wait       (      pthread_cond_t  *cond,
                                   pthread_mutex_t *mutex);
int pthread_cond_timedwait  (      pthread_cond_t  *cond,
                                   pthread_mutex_t *mutex,
                             const struct timespec *abstime);

int pthread_cond_signal     (      pthread_cond_t  *cond);
int pthread_cond_broadcast  (      pthread_cond_t  *cond);

mmuuttex,*********************mmmmmmmmmmmmmmmmmmmuuuuuuuuuuuuuuuuuutttttttttttttttttteeeeeeeeeeeeeeeeeeeeexxxxxxxxxxxxxxxxx,

*abstime);*abstime);

*****mutex);

****cond,
*****mutex);
****cond,

undefi ned 

if called ‘out of order’

i.e. mutex is not locked       pppppppttttttthhhhhhhrrrrrreeeeeeaaaaaaaddddddd_mmmmuuttex_t 
((((((((((((      pthread_cond_t  

*
*

 (((((((      pppppppttthhhrreeaadd_mmutex_t *

      (     h d_ d_   *_ oonnnddddddd_ttttttt  *(((((((      pppppppttttttthhhhhhhrrrrrrreeeeeeeaaaaaaaddddddd_ccccoooonnnnddddddd_t
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Centralized synchronization

Monitors in POSIX (‘C’)
(operators)

…

int pthread_mutex_lock      (      pthread_mutex_t *mutex);
int pthread_mutex_trylock   (      pthread_mutex_t *mutex);
int pthread_mutex_timedlock (      pthread_mutex_t *mutex,
                             const struct timespec *abstime);

int pthread_mutex_unlock    (      pthread_mutex_t *mutex);

int pthread_cond_wait       (      pthread_cond_t  *cond,
                                   pthread_mutex_t *mutex);
int pthread_cond_timedwait  (      pthread_cond_t  *cond,
                                   pthread_mutex_t *mutex,
                             const struct timespec *abstime);

int pthread_cond_signal     (      pthread_cond_t  *cond);
int pthread_cond_broadcast  (      pthread_cond_t  *cond);

can be called 

• any time

• anywhere 

• multiple times

 ((((((((((
 ((      
k 

((      pthread_mutex_t *mutex);
ppthread mutex t *mutex);

( pthread mutex t *mutex);

(((((((((((((      ppppppttttth
((      ptttttthhhreeeaaaadddd
 

(

pptthhrread_mutex_t *mutex);
mmutex t *mutex

( pthread mutex t *mutex);

((      pppppppttttttthhhhhhrrrrrreeeeeeaaaaaaddd___muutteexx_t *mutex,
constt sstttttttrrrrrrruuuuuuucccccccttttttt ttttttiiiiiimmmmmmeeeeeessssppppeeeecc **aaaabbssttime);

( pthread mutex t *mutex))));;

reeeaaaaaadddddd_mmmmmuuuutttte
c ****aaaabbbbssss

         pthread_mutex_t *mutex);
t  (
   

   (((((((( p );
(((( pthread cond t *cond);

;
 *ccccooooooonnnnnnnddddddddd,,,,,,,

d__mmuuuuuttttttteeeeeeexxxxxx______ttttt ******mmmmmmmuuuuttttex,
 sssstttttttrrrrrrruuuuuuccccccttttttt tttttttiiiiiiimmmmmmeeeeeeessssssspppec *abstime);

(((((((      pppppppttttttthhhhhhhread_cond_t  *cond);

      pthread_mutex_t *mutex);
(      pthread_cond_t  *co
      pthread mut
const st
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Centralized synchronization

#define BUFF_SIZE 10
typedef struct { pthread_mutex_t mutex;
                 pthread_cond_t buffer_not_full;
                 pthread_cond_t buffer_not_empty;
                 int count, first, last;
                 int buf [BUFF_SIZE];
               } buffer;

int append (int item, buffer *B) {
  PTHREAD_MUTEX_LOCK (&B->mutex);
  while (B->count == BUFF_SIZE) {
    PTHREAD_COND_WAIT (
                    &B->buffer_not_full,
                    &B->mutex);
  }
  PTHREAD_MUTEX_UNLOCK (&B->mutex);
  PTHREAD_COND_SIGNAL (
                  &B->buffer_not_empty);
  return 0;
}

int take (int *item, buffer *B) {
  PTHREAD_MUTEX_LOCK (&B->mutex);
  while (B->count == 0) {
    PTHREAD_COND_WAIT (
                   &B->buffer_not_empty,
                   &B->mutex);
  }
  PTHREAD_MUTEX_UNLOCK (&B->mutex);
  PTHREAD_COND_SIGNAL (
                   &B->buffer_not_full);
  return 0;
}
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Centralized synchronization

#define BUFF_SIZE 10
typedef struct { pthread_mutex_t mutex;
                 pthread_cond_t buffer_not_full;
                 pthread_cond_t buffer_not_empty;
                 int count, first, last;
                 int buf [BUFF_SIZE];
               } buffer;

int append (int item, buffer *B) {
  PTHREAD_MUTEX_LOCK (&B->mutex);
  while (B->count == BUFF_SIZE) {
    PTHREAD_COND_WAIT (
                    &B->buffer_not_full,
                    &B->mutex);
  }
  PTHREAD_MUTEX_UNLOCK (&B->mutex);
  PTHREAD_COND_SIGNAL (
                  &B->buffer_not_empty);
  return 0;
}

int take (int *item, buffer *B) {
  PTHREAD_MUTEX_LOCK (&B->mutex);
  while (B->count == 0) {
    PTHREAD_COND_WAIT (
                   &B->buffer_not_empty,
                   &B->mutex);
  }
  PTHREAD_MUTEX_UNLOCK (&B->mutex);
  PTHREAD_COND_SIGNAL (
                   &B->buffer_not_full);
  return 0;
}

ot emptoott_eemmmpppppttyyyy;;;;

need to be called 

with a locked mutex
r;

buffer *B) {{{{{{{
&B->mutteeeeeeexxxxxxx)))))));;;;
UFF______SSSSSSSIIIIIIZZZZZZZEEEE) {
((((

mmmmpppppppppppppppp

}}}}}

while (B->cou t 0) {whiillee (((BB->cccooouuunnntt == 000)))) {{{{
  PTHREAD_COND_WAIT (
                  &B->buffer_not_em
                  &B->mutex);
}

better to be called 

after unlocking all mutexes 

(as it is itself potentially blocking)B->mutex);

K (&B->>>>mmmmmmmuuuuuuuttttttteeeeeeexxxxxxx)))))));
(((((((((((((
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Centralized synchronization

static void Reader()

  { try {

      Monitor.Enter (data_to_protect);
      Monitor.Wait  (data_to_protect); 
      … read out protected data 
    }
    finally {
      Monitor.Exit  (data_to_protect);
    }
  }

static void Writer()

  { try {

      Monitor.Enter (data_to_protect);
      … write protected data
      Monitor.Pulse (data_to_protect);
    }
    finally {
      Monitor.Exit  (data_to_protect);
    }
  }

Monitors in C#
using System;
using System.Threading;

static long data_to_protect = 0;
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Centralized synchronization

void Reader()

  { try {

      Monitor::Enter (data_to_protect);
      Monitor::Wait  (data_to_protect); 
      … read out protected data
    }
    finally { 
      Monitor::Exit  (data_to_protect);
    }
  };  

void Writer()

  { try {

      Monitor::Enter (data_to_protect);
      … write protected data
      Monitor::Pulse (data_to_protect);
    }
    finally { 
      Monitor.Exit  (data_to_protect);
    }
  };  

Monitors in Visual C++
using namespace System;
using namespace System::Threading

private: integer data_to_protect;
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Centralized synchronization

Public Sub Reader

    Try

      Monitor.Enter (data_to_protect)
      Monitor.Wait  (data_to_protect) 
      … read out protected data 
    Finally 
      Monitor.Exit  (data_to_protect)
    End Try
End Sub  

Public Sub Writer

    Try

      Monitor.Enter (data_to_protect)
      … write protected data
      Monitor.Pulse (data_to_protect)
    Finally 
      Monitor.Exit  (data_to_protect)
    End Try
End Sub

Monitors in Visual Basic
Imports System
Imports System.Threading

Private Dim data_to_protect As Integer = 0
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Centralized synchronization

public void reader 
   throws InterruptedException {

      mon.enter();
      Condvar.await(); 
      … read out protected data 
      mon.leave();
    }
  

public void writer

   throws InterruptedException {

      mon.enter();
      … write protected data
      Condvar.signal();
      mon.leave();
   }

Monitors in Java
Monitor mon = new Monitor(); 

Monitor.Condition Condvar = mon.new Condition();

Unnnnnnnnnnivivivivivivivivivviviviviii ererererererereeerrsisisisisisisiisisiisitytytytytytytytytytyytyyyyyyyy ppppagagagageee 33303330330300000000 fffffffofof  yyyyyyyyyyyyyy 75775758888  (((chhhha tpter 3888

… the Java library monitor 

connects data or condition 

variables to the monitor 

by convention only!
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Centralized synchronization

Monitors in Java
(by means of language primitives)

Java provides two mechanisms to construct a monitors-like structure:

• Synchronized methods and code blocks: 
all methods and code blocks which are using the synchronized 
tag are mutually exclusive with respect to the addressed class.

• Notifi cation methods: 
wait, notify, and notifyAll can be used only in 
synchronized regions and are waking any or all threads, 
which are waiting in the same synchronized object.
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Centralized synchronization

Monitors in Java
(by means of language primitives)

Considerations:

1. Synchronized methods and code blocks:
• In order to implement a monitor all methods in an object need to be synchronized.

 any other standard method can break a Java monitor and enter at any time.

• Methods outside the monitor-object can synchronize at this object.

 it is impossible to analyse a Java monitor locally, since lock ac-
cesses can exist all over the system.

• Static data is shared between all objects of a class.

 access to static data need to be synchronized with all objects of a class.

Synchronize either in static synchronized blocks: synchronized (this.getClass()) {…}
or in static methods: public synchronized static <method> {…}
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Centralized synchronization

Monitors in Java
(by means of language primitives)

Considerations:

2. Notifi cation methods: wait, notify, and notifyAll
• wait suspends the thread and releases the local lock only

 nested wait-calls will keep all enclosing locks.

• notify and notifyAll do not release the lock!

 methods, which are activated via notifi cation need to wait for lock-access.

• Java does not require any specifi c release order (like a queue) for wait-suspended threads

 livelocks are not prevented at this level (in opposition to RT-Java).

• There are no explicit conditional variables associated with the monitor or data.

 notifi ed threads need to wait for the lock to be released 
and to re-evaluate its entry condition.
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Centralized synchronization

Monitors in Java
(by means of language primitives)

Standard monitor solution:

• declare the monitored data-structures private to the monitor object (non-static).

• introduce a class ConditionVariable:

   public class ConditionVariable {
      public boolean wantToSleep = false;
   }

• introduce synchronization-scopes in monitor-methods:

 synchronize on the adequate conditional variables fi rst and

 synchronize on the adequate monitor-object second.

• make sure that all methods in the monitor are implementing the correct synchronizations.

• make sure that no other method in the whole system is 
synchronizing on or interfering with this monitor-object in any way  by convention.
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Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

public class ReadersWriters {

   private int     readers        = 0;
   private int     waitingReaders = 0;
   private int     waitingWriters = 0;
   private boolean writing        = false;

   ConditionVariable OkToRead  = new ConditionVariable ();
   ConditionVariable OkToWrite = new ConditionVariable ();
…
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Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

…  public void StartWrite () throws InterruptedException {

      synchronized (OkToWrite) {

         synchronized (this) {

            if (writing | readers > 0) {
               waitingWriters++;
               OkToWrite.wantToSleep = true;
            } else {
               writing = true;
               OkToWrite.wantToSleep = false;
            }
         }

         if (OkToWrite.wantToSleep) OkToWrite.wait ();
      } 
   } …
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Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

…  public void StopWrite () {

      synchronized (OkToRead) {

         synchronized (OkToWrite) {

            synchronized (this) {

               if (waitingWriters > 0) {
                  waitingWriters--;
                  OkToWrite.notify (); // wakeup one writer
               } else {
                  writing = false;
                  OkToRead.notifyAll (); // wakeup all readers
                  readers = waitingReaders;
                  waitingReaders = 0;
               }
   } } } } …
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Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

…  public void StartRead () throws InterruptedException {

      synchronized (OkToRead) {

         synchronized (this) {

            if (writing | waitingWriters > 0) {
               waitingReaders++;
               OkToRead.wantToSleep = true;
            } else {
               readers++;
               OkToRead.wantToSleep = false;
            }
         }

         if (OkToRead.wantToSleep) OkToRead.wait ();
      }
   } …
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Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

…  public void StopRead () {

      synchronized (OkToWrite) {

         synchronized (this) {

            readers--;
            if (readers == 0 & waitingWriters > 0) {
               waitingWriters--;
               OkToWrite.notify ();
            }
         }
      }
   }
}
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Centralized synchronization

Monitors in Java

Per Brinch Hansen (1938-2007) in 1999:

Java’s most serious mistake was the decision to use the sequential 
part of the language to implement the run-time support for its paral-
lel features. It strikes me as absurd to write a compiler for the sequen-
tial language concepts only and then attempt to skip the much more 
diffi cult task of implementing a secure parallel notation. This wish-
ful thinking is part of Java’s unfortunate inheritance of the insecure 
C language and its primitive, error-prone library of threads methods.

"Per Brinch Hansen is one of a handful of computer pioneers who was responsible for advan-
cing both operating systems development and concurrent programming from ad hoc tech-
niques to systematic engineering disciplines." (from his IEEE 2002 Computer Pioneer Award)
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Centralized synchronization

Object-orientation and synchronization
Since mutual exclusion, notifi cation, and condition synchronization schemes need to be de-
signed and analyzed considering the implementation of all involved methods and guards:

 New methods cannot be added without re-evaluating the class!

Re-usage concepts of object-oriented programming do not translate to 
synchronized classes (e.g. monitors) and thus need to be considered carefully.

 The parent class might need to be adapted 
in order to suit the global synchronization scheme.

 Inheritance anomaly (Matsuoka & Yonezawa ‘93)

Methods to design and analyse expandible synchronized systems exist, yet they 
are complex and not offered in any concurrent programming language.
Alternatively, inheritance can be banned in the context of synchronization (e.g. Ada).
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Centralized synchronization

Monitors in POSIX, Visual C++, C#, Visual Basic & Java
 All provide lower-level primitives for the construction of monitors.

 All rely on convention rather than compiler checks.

 Visual C++, C+ & Visual Basic offer 
data-encapsulation and connection to the monitor.

 Java offers data-encapsulation (yet not with respect to a monitor).

 POSIX (being a collection of library calls) 
does not provide any data-encapsulation by itself.

 Extreme care must be taken when employing 
object-oriented programming and synchronization (incl. monitors)
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Centralized synchronization

Nested monitor calls
Assuming a thread in a monitor is calling an operation in 
another monitor and is suspended at a conditional variable there:

 the called monitor is aware of the suspension and allows other threads to enter.

 the calling monitor is possibly not aware of the suspension and keeps its lock!

 the unjustifi ed locked calling monitor reduces the 
system performance and leads to potential deadlocks.

Suggestions to solve this situation:

• Maintain the lock anyway: e.g. POSIX, Java

• Prohibit nested monitor calls: e.g. Modula-1

• Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada
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Centralized synchronization

Criticism of monitors

• Mutual exclusion is solved elegantly and safely.

• Conditional synchronization is on the level of semaphores still
 all criticism about semaphores applies inside the monitors

 Mixture of low-level and high-level synchronization constructs.
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Centralized synchronization

Synchronization by protected objects
Combine

the encapsulation feature of monitors
with

the coordinated entries of conditional critical regions
to:

 Protected objects

• All controlled data and operations are encapsulated.

• Operations are mutual exclusive (with exceptions for read-only operations).

• Guards (predicates) are syntactically attached to entries.

• No protected data is accessible (other than by the defi ned operations).

• Fairness inside operations is guaranteed by queuing (according to their priorities).

• Fairness across all operations is guaranteed by the "internal progress fi rst" rule. 

• Re-blocking provided by re-queuing to entries (no internal condition variables).
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Centralized synchronization

Synchronization by protected objects
(Simultaneous read-access)

Some read-only operations do not need to be mutually exclusive:

protected type Shared_Data (Initial : Data_Item) is

   function  Read return Data_Item;
   procedure Write (New_Value : Data_Item);

private
   The_Data : Data_Item := Initial;
end Shared_Data_Item;

• protected functions can have ‘in’ parameters only 
and are not allowed to alter the private data (enforced by the compiler).

 protected functions allow simultaneous access (but mutual exclusive with other operations).

… there is no defi ned priority between functions and other protected operations in Ada.
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Centralized synchronization

Synchronization by protected objects
(Condition synchronization: entries & barriers)

Condition synchronization is realized in the form of protected procedures
combined with boolean predicates (barriers):  called entries in Ada:

Buffer_Size : constant Integer := 10;

type    Index    is mod Buffer_Size;
subtype Count    is Natural range 0 .. Buffer_Size;
type    Buffer_T is array (Index) of Data_Item;

protected type Bounded_Buffer is

   entry Get (Item : out Data_Item);
   entry Put (Item :     Data_Item);

private
   First  : Index := Index’First;
   Last   : Index := Index’Last;
   Num    : Count := 0;
   Buffer : Buffer_T;
end Bounded_Buffer;
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Centralized synchronization

Synchronization by protected objects
(Condition synchronization: entries & barriers)

protected body Bounded_Buffer is

   entry Get (Item : out Data_Item) when Num > 0 is

      begin
         Item  := Buffer (First);
         First := First + 1;
         Num   := Num - 1;
     end Get;

   entry Put (Item : Data_Item) when Num < Buffer_Size is

      begin
         Last          := Last + 1;
         Buffer (Last) := Item;
         Num           := Num + 1;
      end Put;

end Bounded_Buffer;
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Centralized synchronization

Synchronization by protected objects
(Withdrawing entry calls)

Buffer : Bounded_Buffer;

select
   Buffer.Put (Some_Data);

or
   delay 10.0;
   -- do something after 10 s.

end select;

select
   Buffer.Get (Some_Data);

else
   -- do something else

end select;
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Centralized synchronization

Synchronization by protected objects
(Withdrawing entry calls)

Buffer : Bounded_Buffer;

select
   Buffer.Put (Some_Data);

or
   delay 10.0;
   -- do something after 10 s.

end select;

select
   Buffer.Get (Some_Data);

else
   -- do something else

end select;

select
   Buffer.Get (Some_Data);

then abort
   -- meanwhile try something else

end select;

select
   delay 10.0;

then abort
   Buffer.Put (Some_Data);
   -- try to enter for 10 s.

end select;
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Centralized synchronization

Synchronization by protected objects
(Barrier evaluation)

Barrier in protected objects need to be evaluated only on two occasions:

• on creating a protected object, 
all barrier are evaluated according to the initial values of the internal, protected data.

• on leaving a protected procedure or entry, 
all potentially altered barriers are re-evaluated.

Alternatively an implementation may choose to evaluate barriers on those two occasions:

• on calling a protected entry, 
the one associated barrier is evaluated.

• on leaving a protected procedure or entry, 
all potentially altered barriers with tasks queued up on them are re-evaluated.

Barriers are not evaluated while inside a protected object or on leaving a protected function.
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Centralized synchronization

Synchronization by protected objects
(Operations on  entry queues)

The count attribute indicates the number of tasks waiting at a specifi c queue:

protected Block_Five is

   entry Proceed;

private
   Release : Boolean := False;

end Block_Five;

protected body Block_Five is

   entry Proceed
      when Proceed’count > 5
           or Release is

   begin
      Release := Proceed’count > 0;
   end Proceed;

end Block_Five;
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Centralized synchronization

Synchronization by protected objects
(Operations on  entry queues)

The count attribute indicates the number of tasks waiting at a specifi c queue:

protected type Broadcast is

   entry Receive  (M: out Message);
   procedure Send (M:     Message);

private
   New_Message : Message;
   Arrived     : Boolean := False;

end Broadcast;

protected body Broadcast is

   entry Receive (M: out Message)
      when Arrived is

   begin
      M       := New_Message
      Arrived := Receive’count > 0;
   end Proceed;

   procedure Send (M: Message) is

   begin
     New_Message := M;
     Arrived     := Receive’count > 0;
   end Send;
end Broadcast;
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Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)

Additional, essential primitives for concurrent control fl ows:

• Entry families:
A protected entry declaration can contain 
a discrete subtype selector, which can be evaluated by the barrier (other parameters 
cannot be evaluated by barriers) and implements an array of protected entries.

• Requeue facility:
Protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private 
entries. The current protected operation is fi nished and the lock on the object is released.

‘Internal progress fi rst’-rule: external tasks are only considered for queuing 
on barriers once no internally requeued task can be progressed any further!

• Private entries:
Protected entries which are not accessible from outside the protected 
object, but can be employed as destinations for requeue operations.
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Centralized synchronization

Synchronization by protected objects
(Entry families)

package Modes is

  type Mode_T is
    (Takeoff, Ascent, Cruising,
     Descent, Landing);

  protected Mode_Gate is
   procedure Set_Mode (Mode: Mode_T);
   entry Wait_For_Mode (Mode_T);

  private
   Current_Mode : Mode_Type := Takeoff;
  end Mode_Gate;

end Modes;

package body Modes is

  protected body Mode_Gate is
    procedure Set_Mode  
      (Mode: Mode_T) is

  begin
    Current_Mode := Mode;
  end Set_Mode;

  entry Wait_For_Mode
      (for Mode in Mode_T)
      when Current_Mode = Mode is

    begin null;
    end Wait_For_Mode;

  end Mode_Gate;

end Modes;
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Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)

How to moderate the fl ow of incoming calls to a busy server farm?

   

   type Urgency     is (urgent, not_so_urgent);
   type Server_Farm is (primary, secondary);

   protected Pre_Filter is
      entry Reception (U : Urgency);

   private
      entry Server (Server_Farm) (U : Urgency);
   end Pre_Filter;
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Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)

   protected body Pre_Filter is

      entry Reception (U : Urgency) 
        when Server (primary)’count = 0 or else Server (secondary)’count = 0 is

      begin

         If U = urgent and then Server (primary)’count = 0 then
            requeue Server (primary);

         else
            requeue Server (secondary);
         end if;

      end Reception;

      entry Server (for S in Server_Farm) (U : Urgency) when True is

      begin null; -- might try something even more useful
      end Server;

   end Pre_Filter;
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Centralized synchronization

Synchronization by protected objects
(Restrictions for protected operations)

All code inside a protected procedure, function or entry is bound to non-blocking operations.

Thus the following operations are prohibited:

• entry call statements

• delay statements

• task creations or activations

• select statements

• accept statements

• … as well as calls to sub-programs which contain any of the above

 The requeue facility allows for a 
potentially blocking operation, 
and releases the current lock!
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Shared memory based synchronization

General

Criteria:

• Levels of abstraction

• Centralized versus distributed

• Support for automated (compiler based)
consistency and correctness validation

• Error sensitivity

• Predictability

• Effi ciency
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Shared memory based synchronization

POSIX

• All low level constructs available

• Connection with the actual data-struc-
tures by means of convention only

• Extremely error-prone

• Degree of non-determinism intro-
duced by the ‘release some’ semantic

• ‘C’ based

• Portable
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Shared memory based synchronization

Java

• Mutual exclusion available.

• General notifi cation feature (not 
connected to other locks, hence 
not a conditional variable)

• Universal object orientation makes 
local analysis hard or even impossible

• Mixture of 
high-level object oriented features and 
low level concurrency primitives
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Shared memory based synchronization

C#, Visual C++, Visual Basic

• Mutual exclusion via 
library calls (convention)

• Data is associated with the 
locks to protect it

• Condition variables related to 
the data protection locks

• Mixture of 
high-level object oriented features and 
low level concurrency primitives
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Shared memory based synchronization

C++14

• Mutual exclusion in scopes

• Data is not strictly associated 
with the locks to protect it

• Condition variables related to 
the mutual exclusion locks

• Set of essential primitives without combin-
ing them in a syntactically strict form (yet?)
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Shared memory based synchronization

Rust

• Mutual exclusion in scopes

• Data is strictly associated 
with locks to protect it

• Condition variables related to 
the mutual exclusion locks

• Combined with the message passing 
semantics already a power set of tools.

• Concurrency features migrated 
to a standard library.
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Shared memory based synchronization

Modula-1, Chill, Parallel Pascal, …

• Full implementation of the 
Dijkstra / Hoare monitor concept

The term monitor appears in many other 
concurrent languages, yet it is usually not 
associated with an actual language primitive.
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Shared memory based synchronization

Ada

• High-level synchronization support 
which scales to large size projects.

• Full compiler support 
incl. potential deadlock analysis

• Low-Level semaphores for very special cases

Ada has still 
no mainstream competitor 

in the fi eld of explicit concurrency.
(2018)
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High Performance Computing

Synchronization in large scale concurrency
High Performance Computing (HPC) emphasizes on
keeping as many CPU nodes busy as possible:

 Avoid contention on sparse resources.

 Data is assigned to individual processes rather than processes synchronizing on data.

 Data integrity is achieved by keeping the CPU nodes in approximate “lock-step”, 
yet there is still a need to re-sync concurrent entities.

Traditionally this has been implemented using the 
Message Passing Interface (MPI) while implementing separate address spaces.

 Current approaches employ partitioned address spaces, 
i.e. memory spaces can overlap and be re-assigned.  Chapel, Fortress, X10.

 Not all algorithms break down into independent computation slices and so there is 
a need for memory integrity mechanisms in shared/partitioned address spaces.
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Current developments

Atomic operations in X10
X10 offers only atomic blocks in unconditional and conditional form. 

• Unconditional atomic blocks are guaranteed to be non-blocking, 
which means that they cannot be nested and need to be implemented using roll-backs.

• Conditional atomic blocks can also be used as a pure notifi cation system 
(similar to the Java notify method). 

• Parallel statements (incl. parallel, i.e. unrolled ‘loops’).

• Shared variables (and their access mechanisms) are not defi ned.

• The programmer does not specify the scope of the locks (atomic blocks) 
but they are managed by the compiler/runtime environment.

 Code analysis algorithms are required in order to provide effi ciently, 
otherwise the runtime environment needs to associate every atomic block with a global lock.
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Current developments

Synchronization in Chapel
Chapel offers a variety of concurrent primitives:

• Parallel operations on data (e.g. concurrent array operations)

• Parallel statements (incl. parallel, i.e. unrolled ‘loops’)

• Parallelism can also be explicitly limited by serializing statements

• Atomic blocks for the purpose to construct atomic transactions

• Memory integrity needs to be programmed by means of synchronization statements 
(waiting for one or multiple control fl ows to complete) 
and/or atomic blocks

Further Chapel semantics are still forthcoming … so there is still hope for a 
stronger shared memory synchronization / memory integrity construct.
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Synchronization

Message-based synchronization

Synchronization model
• Asynchronous

• Synchronous

• Remote invocation

Addressing (name space)
• direct communication

• mail-box communication

Message structure
• arbitrary

• restricted to ‘basic’ types

• restricted to un-typed communications
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Message-based synchronization

Message protocols

Synchronous message
(sender waiting)

Delay the sender process until

• Receiver becomes available

• Receiver acknowledges reception

e 341 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8
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Message-based synchronization

Message protocols

Synchronous message
(receiver waiting)

Delay the receiver process until

• Sender becomes available

• Sender concludes transmission
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Message-based synchronization

Message protocols

Asynchronous message

Neither the sender nor the receiver is blocked:

• Message is not transferred directly

• A buffer is required to store the messages

• Policy required for buffer sizes and 
buffer overfl ow situations
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Message-based synchronization

Message protocols

Asynchronous message
(simulated by synchronous messages)

Introducing an intermediate process:

• Intermediate needs to be ac-
cepting messages at all times.

• Intermediate also needs to send 
out messages on request.

 While processes are blocked in the sense of 
synchronous message passing, they are not ac-
tually delayed as the intermediate is always ready.
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Message-based synchronization

Message protocols

Synchronous message
(simulated by asynchronous messages)

Introducing two asynchronous messages:

• Both processes voluntarily suspend them-
selves until the transaction is complete.

• As no immediate communication takes place, 
the processes are never actually synchronized.

• The sender (but not the receiver) process 
knows that the transaction is complete.
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Message-based synchronization

Message protocols

Remote invocation

• Delay sender or receiver 
until the fi rst rendezvous point

• Pass parameters

• Keep sender blocked while 
receiver executes the local procedure

• Pass results

• Release both processes out of the rendezvous

e 346 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8
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Message-based synchronization

Message protocols

Remote invocation
(simulated by asynchronous messages)

• Simulate two synchronous messages

• Processes are never actually synchronized

e 347 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8

send

receive

sendreceive

sendreceive

send receive

asyncronous

syncronoustime time



Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 348 of  758  (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message protocols

Remote invocation (no results)

Shorter form of remote invocation which does 
not wait for results to be passed back.

• Still both processes are actually 
synchronized at the time of the invocation.
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Message-based synchronization

Message protocols

Remote invocation (no results)
(simulated by asynchronous messages)

• Simulate one synchronous message

• Processes are never actually synchronized
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Message-based synchronization

Synchronous vs. asynchronous communications

Purpose ‘synchronization’:  synchronous messages / remote invocations
Purpose ‘last message(s) only’:  asynchronous messages

 Synchronous message passing in distributed systems requires hardware support.

 Asynchronous message passing requires the usage of buffers and overfl ow policies.

Can both communication modes emulate each other?
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Message-based synchronization

Synchronous vs. asynchronous communications

Purpose ‘synchronization’:  synchronous messages / remote invocations
Purpose ‘last message(s) only’:  asynchronous messages

 Synchronous message passing in distributed systems requires hardware support.

 Asynchronous message passing requires the usage of buffers and overfl ow policies.

Can both communication modes emulate each other?

• Synchronous communications are emulated by a combination of asynchronous messages 
in some systems (not identical with hardware supported synchronous communication).

• Asynchronous communications can be emulated in 
synchronized message passing systems by introducing a ‘buffer-task’ 
(de-coupling sender and receiver as well as allowing for broadcasts).
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Message-based synchronization

Addressing (name space)

Direct versus indirect:
send     <message> to   <process-name>
wait for <message> from <process-name>
send     <message> to   <mailbox>
wait for <message> from <mailbox>

Asymmetrical addressing:
send     <message> to …
wait for <message>

 Client-server paradigm
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Message-based synchronization

Addressing (name space)

Communication medium:

Connections Functionality

one-to-one buffer, queue, synchronization

one-to-many multicast

one-to-all broadcast

many-to-one local server, synchronization

all-to-one general server, synchronization

many-to-many general network- or bus-system
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Message-based synchronization

Message structure

• Machine dependent representations need to be taken care of in a distributed environment.

• Communication system is often outside the typed language environment.

Most communication systems are handling streams (packets) of a basic element type only.

 Conversion routines for data-structures other then the basic element type are supplied …

… manually (POSIX, C)

… semi-automatic (CORBA)

… automatic (compiler-generated) and typed-persistent (Ada, CHILL, Occam2)
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Message-based synchronization

Message structure (Ada)

package Ada.Streams is
   pragma Pure (Streams);
   type Root_Stream_Type is abstract tagged limited private;
   type Stream_Element is mod implementation-defined;
   type Stream_Element_Offset is range implementation-defined;

   subtype Stream_Element_Count is
      Stream_Element_Offset range 0..Stream_Element_Offset’Last;

   type Stream_Element_Array is
      array (Stream_Element_Offset range <>) of Stream_Element;

   procedure Read  (…) is abstract;
   procedure Write (…) is abstract;

private
   … -- not specified by the language
end Ada.Streams;
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Message-based synchronization

Message structure (Ada)
Reading and writing values of any subtype S of a specifi c type T to a Stream:

procedure S’Write       (Stream : access Ada.Streams.Root_Stream_Type’Class; 
                         Item   : in T);

procedure S’Class’Write (Stream : access Ada.Streams.Root_Stream_Type’Class; 
                         Item   : in T’Class);

procedure S’Read        (Stream : access Ada.Streams.Root_Stream_Type’Class; 
                         Item   : out T);

procedure S’Class’Read  (Stream : access Ada.Streams.Root_Stream_Type’Class; 
                         Item   : out T’Class)

Reading and writing values, bounds and discriminants 
of any subtype S of a specifi c type T to a Stream:

procedure S’Output      (Stream : access Ada.Streams.Root_Stream_Type’Class; 
                         Item   : in T);

function  S’Input (Stream : access Ada.Streams.Root_Stream_Type’Class) return T;
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Message-based synchronization

Message-passing systems examples:

POSIX: “message queues”:
 ordered indirect [asymmetrical | symmetrical] asynchronous

byte-level many-to-many message passing
MPI: “message passing”:

 ordered [direct | indirect] [asymmetrical | symmetrical] asynchronous memory-block-
level [one-to-one | one-to-many | many-to-one | many-to-many] message passing

CHILL: “buffers”, ”signals”:
 ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous]

typed [many-to-many | many-to-one] message passing
Occam2: “channels”:

 ordered indirect symmetrical synchronous fully-typed one-to-one message passing
Ada: “(extended) rendezvous”:

 ordered direct asymmetrical [synchronous | asynchronous]
fully-typed many-to-one remote invocation

Java:  no message passing system defi ned
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Message-based synchronization

Message-passing systems examples:
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POSIX: byte-stream message queues

MPI: memory-blocks message passing
CHILL: basic types message passing

Occam2: fully typed message passing
Ada: fully typed remote invocation
Go: fully typed channels

Erlang: fully typed message passing
Java:  no message passing system defi ned
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Message-based synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:
PAR
   INT reading:
   SEQ i = 0 FOR 1000
      SEQ
         -- generate reading
         SensorChannel ! reading
   INT data:
   SEQ i = 0 FOR 1000
      SEQ
         SensorChannel ? data
         -- employ data

concurrent entities are

synchronized at these points
g
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Message-based synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:
PAR
   INT reading:
   SEQ i = 0 FOR 1000
      SEQ
         -- generate reading
         SensorChannel ! reading
   INT data:
   SEQ i = 0 FOR 1000
      SEQ
         SensorChannel ? data
         -- employ data

Essential Occam2 keywords

ALT PAR SEQ PRI

ANY CHAN OF 

DATA TYPE RECORD OFFSETOF PACKED

BOOL BYTE INT REAL

CASE IF ELSE FOR FROM WHILE

FUNCTION RESULT PROC IS

PROCESSOR PROTOCOL TIMER

SKIP STOP VALOF
a

page 360 of  758  (chapter 3: “Communication & Synchronization” up to page 369)8
 Concurrent, distributed, real-time programming language!
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Message-based synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,

where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.

The CHILL language development was started in 1973 and standardized in 1979.
 strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;

…
send SensorBuffer (reading);

receive case
   (SensorBuffer in data) : …
esac;

send SensorChannel (reading) 
   to consumer

receive case
   (SensorChannel in data): …
esac;

signal SensorChannel = (int) to consumertype;
…
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Message-based synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,

where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.

The CHILL language development was started in 1973 and standardized in 1979.
 strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;

…
send SensorBuffer (reading);

receive case
   (SensorBuffer in data) : …
esac;

send SensorChannel (reading) 
   to consumer

receive case
   (SensorChannel in data): …
esac;

signal SensorChannel = (int) to consumertype;
…

((rrrrrrreeeeeeeaaaaaaadddddddiiiiiiinnnnnnnggggggg    (((((((((((SS))))));););;asynchronous

  (((((((((((SSsynchronous
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Message-based synchronization

Message-based synchronization in Ada

Ada supports remote invocations ((extended) rendezvous) in form of:

• entry points in tasks

• full set of parameter profi les supported

If the local and the remote task are on different architectures, 
or if an intermediate communication system is employed then:

 parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

• Both tasks are synchronized at the beginning of the remote invocation (  ‘rendezvous’)

• The calling task if blocked until the remote routine is completed (  ‘extended rendezvous’)
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Message-based synchronization

Message-based synchronization in Ada
(Rendezvous)

<entry_name> [(index)] <parameters>
 ------ waiting for synchronization
 ------ waiting for synchronization 
 ------ waiting for synchronization 
 ------ waiting for synchronization 
 ------    accept <entry_name> [(index)]

               <parameter_profile>;
---  aaasynchronized

©©©©©©©©© 22220
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time time
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Message-based synchronization

Message-based synchronization in Ada
(Extended rendezvous)

<entry_name> [(index)] <parameters>
 ------ waiting for synchronization
 ------ waiting for synchronization 
 ------ waiting for synchronization 
 ------ waiting for synchronization 
 ------
 ------ blocked
 ------ blocked
 ------ blocked
 ------ blocked
 ------

   accept <entry_name> [(index)]
               <parameter_profile> do
      ------ remote invocation
      ------ remote invocation
      ------ remote invocation
   end <entry_name>;

---
bl k d

 aaa

---   ee

synchronized

return results
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Message-based synchronization

Message-based synchronization in Ada
(Rendezvous)

<entry_name> [(index)] <parameters>
 

   accept <entry_name> [(index)]
                    <parameter_profile>;
   ------ waiting for synchronization
   ------ waiting for synchronization
   ------ waiting for synchronization

synchronized

©©©©©©©©© 22220
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time time
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Message-based synchronization

Message-based synchronization in Ada
(Extended rendezvous)

<entry_name> [(index)] <parameters>
 ------ blocked
 ------ blocked
 ------ blocked
 ------ blocked
 ------

   accept <entry_name> [(index)]
                    <parameter_profile>;
   ------ waiting for synchronization
   ------ waiting for synchronization
   ------ waiting for synchronization

      ------ remote invocation
      ------ remote invocation
      ------ remote invocation
      ------ remote invocation
   end <entry_name>;

tt------------ rrrrreeeeemmmmmoooooooooottttttttttttttttttt
synchronized

©©©©©©©©© 22220
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time time

  ee --- return results
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Message-based synchronization

Message-based synchronization in Ada

Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entry bodies can call other blocking operations.

• Accept statements can be nested (but need to be different).

 helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous 
phase are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

• ‘count on task-entries is defi ned, 
but is only accessible from inside the tasks which owns the entry.

• Entry families (arrays of entries) are supported.

• Private entries (accessible for internal tasks) are supported.
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Summary

Communication & Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores, 
conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks, 
simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models

• Addressing modes

• Message structures

• Examples


