
3
Communication & Synchronization

Uwe R. Zimmer - The Australian National University

Systems, Networks & Concurrency 2020

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 255 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

References for this chapter

[Ben-Ari06]
M. Ben-Ari
Principles of Concurrent and Dis-
tributed Programming
2006, second edition, Prentice-
Hall, ISBN 0-13-711821-X

 [Barnes2006]
 Barnes, John
 Programming in Ada 2005
 Addison-Wesley, Pearson education, ISBN-
13 978-0-321-34078-8, Harlow, England, 2006

 [Gosling2005]
 Gosling, James , Joy, B , Steele,
Guy & Bracha, Gilad
 The Java™ Language Specifi cation
- third edition
 2005

[AdaRM2012]
Ada Reference Manual - Lan-
guage and Standard Libraries;
ISO/IEC 8652:201x (E)

[Chapel 1.11.0 Language
Specifi cation Version 0.97]

see course pages or http://chapel.cray.com/
spec/spec-0.97.pdf released on 2. April 2015

 [Saraswat2010]
 Saraswat, Vijay
 Report on the Programming Language X10
Version 2.01
 Draft — January 13, 2010

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 256 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Overview

Synchronization methods
Shared memory based synchronization

• Semaphores C, POSIX — Dijkstra

• Conditional critical regions Edison (experimental)

• Monitors Modula-1, Mesa — Dijkstra, Hoare, …

• Mutexes & conditional variables POSIX

• Synchronized methods Java, C#, …

• Protected objects Ada

• Atomic blocks Chapel, X10

Message based synchronization
• Asynchronous messages e.g. POSIX, …

• Synchronous messages e.g. Ada, CHILL, Occam2, …

• Remote invocation, remote procedure call e.g. Ada, …

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 257 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Motivation

Side effects
Operations have side effects which are visible …

either
 … locally only

(and protected by runtime-, os-, or hardware-mechanisms)

or
 … outside the current process

 If side effects transcend the local process then all
forms of access need to be synchronized.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 258 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

What's the worst that can happen?

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 259 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

 Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic

… yet perhaps it is an 8-bit integer.
 Unaligned manipulations on the main memory will usually not be atomic

… yet perhaps it is a aligned.
 Broken down to a load-operate-store cycle, the operations will usually not be atomic

… yet perhaps the processor supplies atomic operations for the actual case.
 Many schedulers interrupt threads irrespective of shared data operations

… yet perhaps this scheduler is aware of the shared data.
 Local caches might not be coherent

… yet perhaps they are.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 260 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

 Handling a 64-bit integer on a 8- or 16-bit controller will not be atomic

… yet perhaps it is an 8-bit integer.
 Unaligned manipulations on the main memory will usually not be atomic

… yet perhaps it is a aligned.
 Broken down to a load-operate-store cycle, the operations will usually not be atomic

… yet perhaps the processor supplies atomic operations for the actual case.
 Many schedulers interrupt threads irrespective of shared data operations

… yet perhaps this scheduler is aware of the shared data.
 Local caches might not be coherent

… yet perhaps they are.

s iiii
cccc

eeeerrrrrrrrrrrrrrrrh
 load-operate-store c cle, the rations ill usually noooooootttttttttt

nssssssssssssssss
sssssssss iiinnntttteeeerrrrrrrruuuuppppppppppppppppptttttt ttttttthhhhhhhrrrrrrreeeeeeeeaaaaaaaaaaddddddddddssssssssss iiiiiiiirrrrrrrrrrrrrrrrrrrreeeeeeeeeeeeesssssssssssppppppppppppppppppppeeeeeeeeeeeeeeeeccccccccccccccttttttttttttttttiiiiiiiiiiiiiivvvvvvvvvvvvvvvveeeeeeeeeeeee oooooooooooooooooooffffffffffffff sssssssssssssssssshhhhhhhhhhhhhhhhhhaaaaaaaaaaaaaarrrrrrrrrrrrrrrrreeeeeeeeeeeeeeeeeeeeeddddddddddddddd ddddddddddddddddddddaaaaaaaaaaaaaaattttttttttttttttaaaaaaaaaaaaaaaaaaa oooooooooooooopppppppppppppppppppppeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrraaaaaaaaaaaaaaaaaaaattttttttttttttttttiiiiiiiiiiiiioooooooooooooooonnnnnnnnnnnnnnnnnnnnnssssssssssssssssssss

p
… yett perhhhaps

pppulations on the main memory will usually not be atomic

… yet pe
aaaa load-operate-store cycle, the operations will usually no

… yet perhaps the processor supplies atomic operation
s interrupt threads irres ti f h d d

Even if all assumptions hold:

How to expand this code?

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 261 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Sanity check

i++;

{in one thread}

if i > n {i=0;}

{in another thread}

Do we need to? – really?
int i; {declare globally to multiple threads}

 The chances that such programming errors turn out are usually small and some im-
plicit by chance synchronization in the rest of the system might prevent them at all.

(Many effects stemming from asynchronous memory accesses are interpreted
as (hardware) ‘glitches’, since they are usually rare, yet often disastrous.)

 On assembler level on very simple CPU architectures: synchronization by
employing knowledge about the atomicity of CPU-operations and inter-
rupt structures is nevertheless possible and utilized in practice.

In anything higher than assembler level on single core, predictable µ-controllers:

 Measures for synchronization are required!

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 262 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Condition synchronization by fl ags

Assumption: word-access atomicity:

i.e. assigning two values (not wider than the size of a ‘word’)
to an aligned memory cell concurrently:

x := 0 | x := 500

will result in either x = 0 or x = 500 – and no other value is ever observable

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 263 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Condition synchronization by fl ags

Assuming further that there is a shared memory area between two processes:

• A set of processes agree on a (word-size) atomic variable operating
as a fl ag to indicate synchronization conditions:

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 264 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

process P1;
 statement X;

 repeat until Flag;

 statement Y;
end P1;

process P2;
 statement A;

 Flag := true;

 statement B;
end P2;

Condition synchronization by fl ags

var Flag : boolean := false;

Sequence of operations: A B< ; X A Y<;6 @ ; ,X Y B;6 @

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 265 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Condition synchronization by fl ags

Assuming further that there is a shared memory area between two processes:

• A set of processes agree on a (word-size) atomic variable operating
as a fl ag to indicate synchronization conditions:

Memory fl ag method is ok for simple condition synchronization, but …

 … is not suitable for general mutual exclusion in critical sections!

 … busy-waiting is required to poll the synchronization condition!

 More powerful synchronization operations
are required for critical sections

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 266 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Basic synchronization

by Semaphores
Basic defi nition (Dijkstra 1968)

Assuming the following three conditions on a shared memory cell between processes:

• a set of processes agree on a variable S operating as a
fl ag to indicate synchronization conditions

• an atomic operation P on S — for ‘passeren’ (Dutch for ‘pass’):

P(S): [as soon as S > 0 then S := S - 1] this is a potentially delaying operation

aka: ‘Wait’, ‘Suspend_Until_True’, ‘sem_wait’, …

• an atomic operation V on S — for ‘vrygeven’ (Dutch for ‘to release’):

V(S): [S := S + 1]

aka ‘Signal’, ‘Set-True’, ‘sem_post’, …

 then the variable S is called a Semaphore.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 267 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

process P1;
 statement X;

 wait (sync)

 statement Y;
end P1;

process P2;
 statement A;

 signal (sync);

 statement B;
end P2;

Condition synchronization by semaphores

var sync : semaphore := 0;

Sequence of operations: A B< ; X A Y<;6 @ ; ,X Y B;6 @

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 268 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

process P1;
 statement X;

 wait (mutex);
 statement Y;
 signal (mutex);

 statement Z;
end P1;

process P2;
 statement A;

 wait (mutex);
 statement B;
 signal (mutex);

 statement C;
end P2;

Mutual exclusion by semaphores

var mutex : semaphore := 1;

Sequence of operations:
A B C< < ; X Y Z< < ; , , ,X Z A B C;6 @; , , ,A C X Y Z;6 @; B YJ ;6 @

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 269 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);
 function Current_State (S : Suspension_Object) return Boolean;
 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … ------ not specified by the language
end Ada.Synchronous_Task_Control;

only one task can be blocked at Suspend_Until_True!
(Program_Error will be raised with a second task trying to suspend itself)

 no queues! minimal run-time overhead

 This is "queueless" and can translate

into a single machine instruction.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 270 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Semaphores in Ada

package Ada.Synchronous_Task_Control is

 type Suspension_Object is limited private;

 procedure Set_True (S : in out Suspension_Object);
 procedure Set_False (S : in out Suspension_Object);
 function Current_State (S : Suspension_Object) return Boolean;
 procedure Suspend_Until_True (S : in out Suspension_Object);

private
 … ------ not specified by the language
end Ada.Synchronous_Task_Control;

only one task can be blocked at Suspend_Until_True!
(Program_Error will be raised with a second task trying to suspend itself)

 no queues! minimal run-time overhead

chronous_Task_Control is

Obj t i li it d private;

out Suspension_Object);
outt SSSSSuuuussssppppeeeeeeeennnnnnnnnnnsssssssssiion__OObbjjjjjjjeeecctttttt))))))))));;;;;;;
 SSSSSSSuuuuuuusssssssssssssssssssppppppeeeeeeeeeeeeennnnnnnnnnnsssssssssssiiioonnnnnn____OOOOOOObb ccccccctttttttttttttt))))))))))) rrreeeeeeeeeeeeeeeeettttttttttttuuuuuurrrrrrrnnnnnnnnnn BBBBBBBBBB nnnnnnnnnnnnnn;;;;;;;;;;

pend_Until_True (S : in oouuuutttttttt SSSSSSSSSSSSSSS ssssssssssppppppppppppppppeeeeeennnnnnnnnssssiiiiiiiiiiiiiiiiiiioooooonnnnnnnnnnn jjeeeeccccccccccttttttttttttttt)))))))))))));;;

speciiffiieeddddddd bbbbbbbbbbbbyyyyyyyyyyyyy ttttttthhhhhhheeeeeeeeee aaaaaaaaaaaggggggge
nnooooooooouuuuuuuuusssssssssssss_TTTTTTTTTTT sssssssssskkkkkkkkkkkkk___________CCCCCCCCCCCCCCCCCoooooooooooooooo tttttttttttttttttrrrrrrrooooooooo ;;;;

bee bbbbbbbbbbbbblllllllllllloooooooooooooooooccccccccckkkkeeeeeeeddddddddddddd aaatt Suspend_Until_True!
l bbee rraaiised with a second task trying to suspend itself)

lllllllllllllaaaaaaaaaaannnnnnnnnnngggggggggggg

OOOObbbbjjjjjjjjjjeeeee
OOOOOOOOOOOOOObbbbbbbbbbbbjjjjjjjeeeeeee

ooooooooooooooooooolllllllllleeeeeeeeeee

ouusss TT sssssk
d bbbyyyyyyyyy

ouus________TTTTTTTTTTTTTTTTaaaaaaaaaaaaaaassssssssssssssssskkkkkkkkkkkk oooooooooooooonnnnnnnnnntttttt

bbbbbbbbbbbblllllllooooo

gggeeee lllllll ggggggggggggggguuuuuuuuuuuuuaaaaaaa
ooooooollllllllll;;;;;;;;;

SSSSSSSSSSSSSSSuuuuu
 SSSuuuuuuuuuuuuuussss

ggggeeeeeeeeeeeeeeeeee

nnnnnnnnnnnsssssssssss
cccccttt
tttt

jjjjjjjeeeeeee____OOOOOOOOOObbbbbbbbbjjjjjjjjjjjjeeeeeeeeeeccccccccccccccctttt
nnnn____________OOOOOOOOOOOOObbbjjjjjjjjeeeeeeeeeccccccccccccctttt

);;t))))))));;;;;;;;;;;;
)))))) rrrrrrrrrreeeeeeee uuuuuuurrrrrr B eeBBBBBBBBBooooooooooooooo eeeeeeaaaaaaaaaaaaannnnn;;;

eennenn
eennnnn

procedure Susppend Until True (S : in o

t S i Obj t i li it d ii

on Curr
pppppppppppppppppppprrrrrrrrrrrrrrrroooooooooooooocccccccccceeeeeeedddddddddddddddddduurre SSSusp

rrrrrrrrrrrrrrrrrrrrrrrrriiiiiiiiiiiiv

nn o
in oo

reeennnnttttttt__________SSSSSSSSSSSSSttttttttttttttttaaaaaaaaaaaaaaaaaaattttttttttttttttttteeeeeeeeeeeeeeeeeeeee ((((((((((((((((((((((SSSSSSSSSSSSSSSSSSS ::
pend Until True (S : in oo

type Suspensioon_Object is limitedd

pppppppppprrrrrrrrrrroooooooooooccccccccccceeeeeeeeeeeddddddddddduuuuuuuuurrrrrreeeee SSSSSeettt_
procedure Set_

 function Cur

bject is limmiittttteeeeeeddddddd ppppppppppprrrrrrrr

_TTTrue (S : in
_False (S : in
rent St

 for special cases only … otherwise:

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 271 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Malicious use of "queueless semaphores"
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X : Suspension_Object;

task B;
task body B is
begin
 …
 Suspend_Until_True (X);
 …
 …
end B;

task A;
task body A is
begin
 …
 Suspend_Until_True (X);
 …
 …
end A;

 Could raise a Program_Error as multiple tasks potentially suspend on the same semaphore
(occurs only with high effi ciency semaphores which do not provide process queues)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 272 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Malicious use of "queueless semaphores"
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X, Y : Suspension_Object;

task B;
task body B is
begin
 …
 Suspend_Until_True (Y);
 Set_True (X);
 …
end B;

task A;
task body A is
begin
 …
 Suspend_Until_True (X);
 Set_True (Y);
 …
end A;

 Will result in a deadlock (assuming no other Set_True calls)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 273 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Malicious use of "queueless semaphores"
with Ada.Synchronous_Task_Control; use Ada.Synchronous_Task_Control;
X, Y : Suspension_Object;

task B;
task body B is
begin
 …
 Suspend_Until_True (Y);
 Suspend_Until_True (X);
 …
end B;

task A;
task body A is
begin
 …
 Suspend_Until_True (X);
 Suspend_Until_True (Y);
 …
end A;

 Will potentially result in a deadlock (with general semaphores)
or a Program_Error in Ada.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 274 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Semaphores in POSIX

int sem_init (sem_t *sem_location, int pshared, unsigned int value);
int sem_destroy (sem_t *sem_location);

int sem_wait (sem_t *sem_location);
int sem_trywait (sem_t *sem_location);
int sem_timedwait (sem_t *sem_location, const struct timespec *abstime);

int sem_post (sem_t *sem_location);

int sem_getvalue (sem_t *sem_location, int *value);

pshared is actually a Boolean indicating whether the

semaphore is to be shared between processes

aarrrre

tioonaal UUniversity page 274 ofy 758 (chapter 3: “Communication & Synchronization” u8tioionalllll UUUUUnUniiiiiviver iisitty page 274 ofy 758 (chapter 3: “Communication & Synchronization” u8

*value indicates the number of waiting processes as a

negative integer in case the semaphore value is zero

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 275 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Semaphores in POSIX
sem_t mutex, cond[2];
typedef emun {low, high} priority_t;
int waiting;
int busy;

void allocate (priority_t P)
{
 sem_wait (&mutex);
 if (busy) {
 sem_post (&mutex);
 sem_wait (&cond[P]);
 }
 busy = 1;
 sem_post (&mutex);
}

void deallocate (priority_t P)
{
 sem_wait (&mutex);
 busy = 0;
 sem_getvalue (&cond[high], &waiting);
 if (waiting < 0) {
 sem_post (&cond[high]);
 }
 else {
 sem_getvalue (&cond[low], &waiting);
 if (waiting < 0) {
 sem_post (&cond[low]);
 }
 else {
 sem_post (&mutex);
} } }

Deadlock?

Livelock?

Mutual exclusion?

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 276 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Semaphores in Java (since 2004)

Semaphore (int permits, boolean fair)

 void acquire ()
 void acquire (int permits)
 void acquireUninterruptibly (int permits)
 boolean tryAcquire ()
 boolean tryAcquire (int permits, long timeout, TimeUnit unit)

 int availablePermits ()
protected void reducePermits (int reduction)
 int drainPermits ()

 void release ()
 void release (int permits)

protected Collection <Thread> getQueuedThreads ()
 int getQueueLength ()
 boolean hasQueuedThreads ()
 boolean isFair ()
 String toString ()

wait

signal

check and manipulate

administration

}}
gggg ong tgg
}
nnggggggn
}
nnggggggng

}}

}}

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 277 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Towards synchronization

Review of semaphores
• Semaphores are not bound to any resource or method or region

 Compiler has no idea what is supposed to be protected by a semaphore.

• Semaphores are scattered all over the code

 Hard to read and highly error-prone.

 Adding or deleting a single semaphore operation usually stalls a whole system.

 Semaphores are generally considered
inadequate for non-trivial systems.

(all concurrent languages and environments offer
effi cient and higher-abstraction synchronization methods)

 Special (usually close-to-hardware) applications exist.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 278 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Distributed synchronization

Conditional Critical Regions

Basic idea:

• Critical regions are a set of associated code sections in different processes,
which are guaranteed to be executed in mutual exclusion:

• Shared data structures are grouped in named regions
and are tagged as being private resources.

• Processes are prohibited from entering a critical region,
when another process is active in any associated critical region.

• Condition synchronisation is provided by guards:

• When a process wishes to enter a critical region it evaluates the guard (under mu-
tual exclusion). If the guard evaluates to false, the process is suspended / delayed.

• Generally, no access order can be assumed potential livelocks

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 279 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Distributed synchronization

process producer;

 loop

 region critial_buffer_region
 when buffer.size < N do
 ------ place in buffer etc.
 end region;

 end loop;
end producer;

process consumer;

 loop

 region critial_buffer_region
 when buffer.size > 0 do
 ------ take from buffer etc.
 end region;

 end loop;
end consumer;

Conditional Critical Regions

buffer : buffer_t;
resource critial_buffer_region : buffer;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 280 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Distributed synchronization

Review of Conditional Critical Regions

• Well formed synchronization blocks and synchronization conditions.

• Code, data and synchronization primitives are associated (known to compiler and runtime).

• All guards need to be re-evaluated, when any conditional critical region is left:

 all involved processes are activated to test their guards

 there is no order in the re-evaluation phase potential livelocks

• Condition synchronisation inside the critical code sections
requires to leave and re-enter a critical region.

• As with semaphores the conditional critical regions are distributed all over the code.

 on a larger scale: same problems as with semaphores.

(The language Edison (Per Brinch Hansen, 1981) uses conditional critical regions for synchroniz-
ation in a multiprocessor environment (each process is associated with exactly one processor).)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 281 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors
(Modula-1, Mesa — Dijkstra, Hoare)

Basic idea:

• Collect all operations and data-structures shared in critical regions in one place, the monitor.

• Formulate all operations as procedures or functions.

• Prohibit access to data-structures, other than by the monitor-procedures and functions.

• Assure mutual exclusion of all monitor-procedures and functions.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 282 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors

monitor buffer;

 export append, take;

 var (* declare protected vars *)

 procedure append (I : integer);
 …

 procedure take (var I : integer);
 …
begin
 (* initialisation *)
end;

How to implement

conditional synchronization?

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 283 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors with condition synchronization
(Hoare ‘74)

Hoare-monitors:

• Condition variables are implemented by semaphores (Wait and Signal).

• Queues for tasks suspended on condition variables are realized.

• A suspended task releases its lock on the monitor, enabling another task to enter.

 More effi cient evaluation of the guards:
the task leaving the monitor can evaluate all guards and the right tasks can be activated.

 Blocked tasks may be ordered and livelocks prevented.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 284 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors with condition synchronization
monitor buffer;

 export append, take;

 var BUF : array […] of integer;
 top, base : 0..size-1;
 NumberInBuffer : integer;
 spaceavailable, itemavailable : condition;

 procedure append (I : integer);
 begin
 if NumberInBuffer = size then
 wait (spaceavailable);
 end if;
 BUF [top] := I;
 NumberInBuffer := NumberInBuffer + 1;
 top := (top + 1) mod size;
 signal (itemavailable)
 end append; …

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 285 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors with condition synchronization
…
 procedure take (var I : integer);
 begin
 if NumberInBuffer = 0 then
 wait (itemavailable);
 end if;
 I := BUF[base];
 base := (base+1) mod size;
 NumberInBuffer := NumberInBuffer-1;
 signal (spaceavailable);
 end take;
begin (* initialisation *)
 NumberInBuffer := 0;
 top := 0;
 base := 0
end;

The signalling and the

waiting process are both

active in the monitor!

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 286 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors with condition synchronization

Suggestions to overcome the multiple-tasks-in-monitor-problem:

• A signal is allowed only as the last action of a process before it leaves the monitor.

• A signal operation has the side-effect of executing a return statement.

• Hoare, Modula-1, POSIX:
a signal operation which unblocks another process has the side-effect of blocking the cur-
rent process; this process will only execute again once the monitor is unlocked again.

• A signal operation which unblocks a process does not block the caller,
but the unblocked process must re-gain access to the monitor.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 287 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Modula-1

• procedure wait (s, r):
delays the caller until condition variable s is true (r is the rank (or ‘priority’) of the caller).

• procedure send (s):
If a process is waiting for the condition variable s, then the process at the top of
the queue of the highest fi lled rank is activated (and the caller suspended).

• function awaited (s) return integer:
check for waiting processes on s.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 288 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Modula-1
INTERFACE MODULE resource_control;

 DEFINE allocate, deallocate;

 VAR busy : BOOLEAN; free : SIGNAL;

 PROCEDURE allocate;
 BEGIN
 IF busy THEN WAIT (free) END;
 busy := TRUE;
 END;

 PROCEDURE deallocate;
 BEGIN
 busy := FALSE;
 SEND (free); ------ or: IF AWAITED (free) THEN SEND (free);
 END;

BEGIN
 busy := false;
END.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 289 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in POSIX (‘C’)
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);
…

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 290 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in POSIX (‘C’)
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);
…

ad
ad
ad

ad
ad
ad

)

dd___mutex_t *mutex,
d___mutexattr_t *attr);
d___mutex_t *mutex);

d_____cond_t *cond,
d____condattr_t *attr);
d____cond_t *cond);

Attributes include:

• semantics for trying to lock a mutex which

is locked already by the same thread

• sharing of mutexes and

condition variables between processes

• priority ceiling

• clock used for timeouts

• …

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 291 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in POSIX (‘C’)
(types and creation)

Synchronization between POSIX-threads:

typedef … pthread_mutex_t;
typedef … pthread_mutexattr_t;
typedef … pthread_cond_t;
typedef … pthread_condattr_t;

int pthread_mutex_init (pthread_mutex_t *mutex,
 const pthread_mutexattr_t *attr);
int pthread_mutex_destroy (pthread_mutex_t *mutex);

int pthread_cond_init (pthread_cond_t *cond,
 const pthread_condattr_t *attr);
int pthread_cond_destroy (pthread_cond_t *cond);
…

Undefi ned while locked

r_t;

 (ppthre
 cccccccoooooooonnst pthre
((((pthre

291 f 758 (h 3 “C i i & S8291 f 58 (h 3 “C i i & S8

Undefi ned while threads are waiting

((

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 292 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in POSIX (‘C’)
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

 ppppppthrreeaaadddd____cccccooooooonnnnnnndddddddd_______tttttttttt *******ccccccccccccccccoooooooooooooooonnnnnnnnnnnnnnnnddddddddddddddddddd,,,,,,,
h

 pppppttttthhhhhrrrreeeeaaaaaddddd_cccooonnnddddd_tttt ***ccoonddd,
 pthread_mutex_t *mutex);

pthread cond t * d

unblocks ‘at least one’ thread

(

 cccccons

eeaadd cond t *cond);eeeeeeeeeeaaaaaaaaaddddddddddddddddddd cccccccooooooonnnnndddddddddddd tttttttttt ****ccoonddddddd))))));

r
u
rrreeeeeaaaaadddd_mmmuuutttteeexxx_ttt ***mmutttex,
uccct timespec *abstime);

,
d
unblocks all threads

(pppppppttttttthhhhhhhrre
(((((((((((((pthre
(rreerrrreeeeeeeee

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 293 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in POSIX (‘C’)
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

mmuuttex,*********************mmmmmmmmmmmmmmmmmmmuuuuuuuuuuuuuuuuuutttttttttttttttttteeeeeeeeeeeeeeeeeeeeexxxxxxxxxxxxxxxxx,

*abstime);*abstime);

*****mutex);

****cond,
*****mutex);
****cond,

undefi ned

if called ‘out of order’

i.e. mutex is not locked pppppppttttttthhhhhhhrrrrrreeeeeeaaaaaaaddddddd_mmmmuuttex_t
((((((((((((pthread_cond_t

*
*

 (((((((pppppppttthhhrreeaadd_mmutex_t *

 (h d_ d_ *_ oonnnddddddd_ttttttt *(((((((pppppppttttttthhhhhhhrrrrrrreeeeeeeaaaaaaaddddddd_ccccoooonnnnddddddd_t

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 294 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in POSIX (‘C’)
(operators)

…

int pthread_mutex_lock (pthread_mutex_t *mutex);
int pthread_mutex_trylock (pthread_mutex_t *mutex);
int pthread_mutex_timedlock (pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_mutex_unlock (pthread_mutex_t *mutex);

int pthread_cond_wait (pthread_cond_t *cond,
 pthread_mutex_t *mutex);
int pthread_cond_timedwait (pthread_cond_t *cond,
 pthread_mutex_t *mutex,
 const struct timespec *abstime);

int pthread_cond_signal (pthread_cond_t *cond);
int pthread_cond_broadcast (pthread_cond_t *cond);

can be called

• any time

• anywhere

• multiple times

 ((((((((((
 ((
k

((pthread_mutex_t *mutex);
ppthread mutex t *mutex);

(pthread mutex t *mutex);

(((((((((((((ppppppttttth
((ptttttthhhreeeaaaadddd

(

pptthhrread_mutex_t *mutex);
mmutex t *mutex

(pthread mutex t *mutex);

((pppppppttttttthhhhhhrrrrrreeeeeeaaaaaaddd___muutteexx_t *mutex,
constt sstttttttrrrrrrruuuuuuucccccccttttttt ttttttiiiiiimmmmmmeeeeeessssppppeeeecc **aaaabbssttime);

(pthread mutex t *mutex))));;

reeeaaaaaadddddd_mmmmmuuuutttte
c ****aaaabbbbssss

 pthread_mutex_t *mutex);
t (

 ((((((((p);
((((pthread cond t *cond);

;
 *ccccooooooonnnnnnnddddddddd,,,,,,,

d__mmuuuuuttttttteeeeeeexxxxxx______ttttt ******mmmmmmmuuuuttttex,
 sssstttttttrrrrrrruuuuuuccccccttttttt tttttttiiiiiiimmmmmmeeeeeeessssssspppec *abstime);

(((((((pppppppttttttthhhhhhhread_cond_t *cond);

 pthread_mutex_t *mutex);
(pthread_cond_t *co
 pthread mut
const st

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 295 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

#define BUFF_SIZE 10
typedef struct { pthread_mutex_t mutex;
 pthread_cond_t buffer_not_full;
 pthread_cond_t buffer_not_empty;
 int count, first, last;
 int buf [BUFF_SIZE];
 } buffer;

int append (int item, buffer *B) {
 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == BUFF_SIZE) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_full,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_empty);
 return 0;
}

int take (int *item, buffer *B) {
 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == 0) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_empty,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_full);
 return 0;
}

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 296 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

#define BUFF_SIZE 10
typedef struct { pthread_mutex_t mutex;
 pthread_cond_t buffer_not_full;
 pthread_cond_t buffer_not_empty;
 int count, first, last;
 int buf [BUFF_SIZE];
 } buffer;

int append (int item, buffer *B) {
 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == BUFF_SIZE) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_full,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_empty);
 return 0;
}

int take (int *item, buffer *B) {
 PTHREAD_MUTEX_LOCK (&B->mutex);
 while (B->count == 0) {
 PTHREAD_COND_WAIT (
 &B->buffer_not_empty,
 &B->mutex);
 }
 PTHREAD_MUTEX_UNLOCK (&B->mutex);
 PTHREAD_COND_SIGNAL (
 &B->buffer_not_full);
 return 0;
}

ot emptoott_eemmmpppppttyyyy;;;;

need to be called

with a locked mutex
r;

buffer *B) {{{{{{{
&B->mutteeeeeeexxxxxxx)))))));;;;
UFF______SSSSSSSIIIIIIZZZZZZZEEEE) {
((((

mmmmpppppppppppppppp

}}}}}

while (B->cou t 0) {whiillee (((BB->cccooouuunnntt == 000)))) {{{{
 PTHREAD_COND_WAIT (
 &B->buffer_not_em
 &B->mutex);
}

better to be called

after unlocking all mutexes

(as it is itself potentially blocking)B->mutex);

K (&B->>>>mmmmmmmuuuuuuuttttttteeeeeeexxxxxxx)))))));
(((((((((((((

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 297 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

static void Reader()

 { try {

 Monitor.Enter (data_to_protect);
 Monitor.Wait (data_to_protect);
 … read out protected data
 }
 finally {
 Monitor.Exit (data_to_protect);
 }
 }

static void Writer()

 { try {

 Monitor.Enter (data_to_protect);
 … write protected data
 Monitor.Pulse (data_to_protect);
 }
 finally {
 Monitor.Exit (data_to_protect);
 }
 }

Monitors in C#
using System;
using System.Threading;

static long data_to_protect = 0;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 298 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

void Reader()

 { try {

 Monitor::Enter (data_to_protect);
 Monitor::Wait (data_to_protect);
 … read out protected data
 }
 finally {
 Monitor::Exit (data_to_protect);
 }
 };

void Writer()

 { try {

 Monitor::Enter (data_to_protect);
 … write protected data
 Monitor::Pulse (data_to_protect);
 }
 finally {
 Monitor.Exit (data_to_protect);
 }
 };

Monitors in Visual C++
using namespace System;
using namespace System::Threading

private: integer data_to_protect;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 299 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Public Sub Reader

 Try

 Monitor.Enter (data_to_protect)
 Monitor.Wait (data_to_protect)
 … read out protected data
 Finally
 Monitor.Exit (data_to_protect)
 End Try
End Sub

Public Sub Writer

 Try

 Monitor.Enter (data_to_protect)
 … write protected data
 Monitor.Pulse (data_to_protect)
 Finally
 Monitor.Exit (data_to_protect)
 End Try
End Sub

Monitors in Visual Basic
Imports System
Imports System.Threading

Private Dim data_to_protect As Integer = 0

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 300 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

public void reader
 throws InterruptedException {

 mon.enter();
 Condvar.await();
 … read out protected data
 mon.leave();
 }

public void writer

 throws InterruptedException {

 mon.enter();
 … write protected data
 Condvar.signal();
 mon.leave();
 }

Monitors in Java
Monitor mon = new Monitor();

Monitor.Condition Condvar = mon.new Condition();

Unnnnnnnnnnivivivivivivivivivviviviviii ererererererereeerrsisisisisisisiisisiisitytytytytytytytytytyytyyyyyyyy ppppagagagageee 33303330330300000000 fffffffofof yyyyyyyyyyyyyy 75775758888 (((chhhha tpter 3888

… the Java library monitor

connects data or condition

variables to the monitor

by convention only!

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 301 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Java
(by means of language primitives)

Java provides two mechanisms to construct a monitors-like structure:

• Synchronized methods and code blocks:
all methods and code blocks which are using the synchronized
tag are mutually exclusive with respect to the addressed class.

• Notifi cation methods:
wait, notify, and notifyAll can be used only in
synchronized regions and are waking any or all threads,
which are waiting in the same synchronized object.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 302 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Java
(by means of language primitives)

Considerations:

1. Synchronized methods and code blocks:
• In order to implement a monitor all methods in an object need to be synchronized.

 any other standard method can break a Java monitor and enter at any time.

• Methods outside the monitor-object can synchronize at this object.

 it is impossible to analyse a Java monitor locally, since lock ac-
cesses can exist all over the system.

• Static data is shared between all objects of a class.

 access to static data need to be synchronized with all objects of a class.

Synchronize either in static synchronized blocks: synchronized (this.getClass()) {…}
or in static methods: public synchronized static <method> {…}

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 303 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Java
(by means of language primitives)

Considerations:

2. Notifi cation methods: wait, notify, and notifyAll
• wait suspends the thread and releases the local lock only

 nested wait-calls will keep all enclosing locks.

• notify and notifyAll do not release the lock!

 methods, which are activated via notifi cation need to wait for lock-access.

• Java does not require any specifi c release order (like a queue) for wait-suspended threads

 livelocks are not prevented at this level (in opposition to RT-Java).

• There are no explicit conditional variables associated with the monitor or data.

 notifi ed threads need to wait for the lock to be released
and to re-evaluate its entry condition.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 304 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Java
(by means of language primitives)

Standard monitor solution:

• declare the monitored data-structures private to the monitor object (non-static).

• introduce a class ConditionVariable:

 public class ConditionVariable {
 public boolean wantToSleep = false;
 }

• introduce synchronization-scopes in monitor-methods:

 synchronize on the adequate conditional variables fi rst and

 synchronize on the adequate monitor-object second.

• make sure that all methods in the monitor are implementing the correct synchronizations.

• make sure that no other method in the whole system is
synchronizing on or interfering with this monitor-object in any way by convention.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 305 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

public class ReadersWriters {

 private int readers = 0;
 private int waitingReaders = 0;
 private int waitingWriters = 0;
 private boolean writing = false;

 ConditionVariable OkToRead = new ConditionVariable ();
 ConditionVariable OkToWrite = new ConditionVariable ();
…

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 306 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

… public void StartWrite () throws InterruptedException {

 synchronized (OkToWrite) {

 synchronized (this) {

 if (writing | readers > 0) {
 waitingWriters++;
 OkToWrite.wantToSleep = true;
 } else {
 writing = true;
 OkToWrite.wantToSleep = false;
 }
 }

 if (OkToWrite.wantToSleep) OkToWrite.wait ();
 }
 } …

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 307 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

… public void StopWrite () {

 synchronized (OkToRead) {

 synchronized (OkToWrite) {

 synchronized (this) {

 if (waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify (); // wakeup one writer
 } else {
 writing = false;
 OkToRead.notifyAll (); // wakeup all readers
 readers = waitingReaders;
 waitingReaders = 0;
 }
 } } } } …

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 308 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

… public void StartRead () throws InterruptedException {

 synchronized (OkToRead) {

 synchronized (this) {

 if (writing | waitingWriters > 0) {
 waitingReaders++;
 OkToRead.wantToSleep = true;
 } else {
 readers++;
 OkToRead.wantToSleep = false;
 }
 }

 if (OkToRead.wantToSleep) OkToRead.wait ();
 }
 } …

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 309 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Java
(multiple-readers-one-writer-example: usage of external conditional variables)

… public void StopRead () {

 synchronized (OkToWrite) {

 synchronized (this) {

 readers--;
 if (readers == 0 & waitingWriters > 0) {
 waitingWriters--;
 OkToWrite.notify ();
 }
 }
 }
 }
}

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 310 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in Java

Per Brinch Hansen (1938-2007) in 1999:

Java’s most serious mistake was the decision to use the sequential
part of the language to implement the run-time support for its paral-
lel features. It strikes me as absurd to write a compiler for the sequen-
tial language concepts only and then attempt to skip the much more
diffi cult task of implementing a secure parallel notation. This wish-
ful thinking is part of Java’s unfortunate inheritance of the insecure
C language and its primitive, error-prone library of threads methods.

"Per Brinch Hansen is one of a handful of computer pioneers who was responsible for advan-
cing both operating systems development and concurrent programming from ad hoc tech-
niques to systematic engineering disciplines." (from his IEEE 2002 Computer Pioneer Award)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 311 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Object-orientation and synchronization
Since mutual exclusion, notifi cation, and condition synchronization schemes need to be de-
signed and analyzed considering the implementation of all involved methods and guards:

 New methods cannot be added without re-evaluating the class!

Re-usage concepts of object-oriented programming do not translate to
synchronized classes (e.g. monitors) and thus need to be considered carefully.

 The parent class might need to be adapted
in order to suit the global synchronization scheme.

 Inheritance anomaly (Matsuoka & Yonezawa ‘93)

Methods to design and analyse expandible synchronized systems exist, yet they
are complex and not offered in any concurrent programming language.
Alternatively, inheritance can be banned in the context of synchronization (e.g. Ada).

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 312 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Monitors in POSIX, Visual C++, C#, Visual Basic & Java
 All provide lower-level primitives for the construction of monitors.

 All rely on convention rather than compiler checks.

 Visual C++, C+ & Visual Basic offer
data-encapsulation and connection to the monitor.

 Java offers data-encapsulation (yet not with respect to a monitor).

 POSIX (being a collection of library calls)
does not provide any data-encapsulation by itself.

 Extreme care must be taken when employing
object-oriented programming and synchronization (incl. monitors)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 313 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Nested monitor calls
Assuming a thread in a monitor is calling an operation in
another monitor and is suspended at a conditional variable there:

 the called monitor is aware of the suspension and allows other threads to enter.

 the calling monitor is possibly not aware of the suspension and keeps its lock!

 the unjustifi ed locked calling monitor reduces the
system performance and leads to potential deadlocks.

Suggestions to solve this situation:

• Maintain the lock anyway: e.g. POSIX, Java

• Prohibit nested monitor calls: e.g. Modula-1

• Provide constructs which specify the release of a monitor lock for remote calls, e.g. Ada

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 314 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Criticism of monitors

• Mutual exclusion is solved elegantly and safely.

• Conditional synchronization is on the level of semaphores still
 all criticism about semaphores applies inside the monitors

 Mixture of low-level and high-level synchronization constructs.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 315 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
Combine

the encapsulation feature of monitors
with

the coordinated entries of conditional critical regions
to:

 Protected objects

• All controlled data and operations are encapsulated.

• Operations are mutual exclusive (with exceptions for read-only operations).

• Guards (predicates) are syntactically attached to entries.

• No protected data is accessible (other than by the defi ned operations).

• Fairness inside operations is guaranteed by queuing (according to their priorities).

• Fairness across all operations is guaranteed by the "internal progress fi rst" rule.

• Re-blocking provided by re-queuing to entries (no internal condition variables).

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 316 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Simultaneous read-access)

Some read-only operations do not need to be mutually exclusive:

protected type Shared_Data (Initial : Data_Item) is

 function Read return Data_Item;
 procedure Write (New_Value : Data_Item);

private
 The_Data : Data_Item := Initial;
end Shared_Data_Item;

• protected functions can have ‘in’ parameters only
and are not allowed to alter the private data (enforced by the compiler).

 protected functions allow simultaneous access (but mutual exclusive with other operations).

… there is no defi ned priority between functions and other protected operations in Ada.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 317 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Condition synchronization: entries & barriers)

Condition synchronization is realized in the form of protected procedures
combined with boolean predicates (barriers): called entries in Ada:

Buffer_Size : constant Integer := 10;

type Index is mod Buffer_Size;
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer_T is array (Index) of Data_Item;

protected type Bounded_Buffer is

 entry Get (Item : out Data_Item);
 entry Put (Item : Data_Item);

private
 First : Index := Index’First;
 Last : Index := Index’Last;
 Num : Count := 0;
 Buffer : Buffer_T;
end Bounded_Buffer;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 318 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Condition synchronization: entries & barriers)

protected body Bounded_Buffer is

 entry Get (Item : out Data_Item) when Num > 0 is

 begin
 Item := Buffer (First);
 First := First + 1;
 Num := Num - 1;
 end Get;

 entry Put (Item : Data_Item) when Num < Buffer_Size is

 begin
 Last := Last + 1;
 Buffer (Last) := Item;
 Num := Num + 1;
 end Put;

end Bounded_Buffer;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 319 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Withdrawing entry calls)

Buffer : Bounded_Buffer;

select
 Buffer.Put (Some_Data);

or
 delay 10.0;
 -- do something after 10 s.

end select;

select
 Buffer.Get (Some_Data);

else
 -- do something else

end select;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 320 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Withdrawing entry calls)

Buffer : Bounded_Buffer;

select
 Buffer.Put (Some_Data);

or
 delay 10.0;
 -- do something after 10 s.

end select;

select
 Buffer.Get (Some_Data);

else
 -- do something else

end select;

select
 Buffer.Get (Some_Data);

then abort
 -- meanwhile try something else

end select;

select
 delay 10.0;

then abort
 Buffer.Put (Some_Data);
 -- try to enter for 10 s.

end select;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 321 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Barrier evaluation)

Barrier in protected objects need to be evaluated only on two occasions:

• on creating a protected object,
all barrier are evaluated according to the initial values of the internal, protected data.

• on leaving a protected procedure or entry,
all potentially altered barriers are re-evaluated.

Alternatively an implementation may choose to evaluate barriers on those two occasions:

• on calling a protected entry,
the one associated barrier is evaluated.

• on leaving a protected procedure or entry,
all potentially altered barriers with tasks queued up on them are re-evaluated.

Barriers are not evaluated while inside a protected object or on leaving a protected function.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 322 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Operations on entry queues)

The count attribute indicates the number of tasks waiting at a specifi c queue:

protected Block_Five is

 entry Proceed;

private
 Release : Boolean := False;

end Block_Five;

protected body Block_Five is

 entry Proceed
 when Proceed’count > 5
 or Release is

 begin
 Release := Proceed’count > 0;
 end Proceed;

end Block_Five;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 323 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Operations on entry queues)

The count attribute indicates the number of tasks waiting at a specifi c queue:

protected type Broadcast is

 entry Receive (M: out Message);
 procedure Send (M: Message);

private
 New_Message : Message;
 Arrived : Boolean := False;

end Broadcast;

protected body Broadcast is

 entry Receive (M: out Message)
 when Arrived is

 begin
 M := New_Message
 Arrived := Receive’count > 0;
 end Proceed;

 procedure Send (M: Message) is

 begin
 New_Message := M;
 Arrived := Receive’count > 0;
 end Send;
end Broadcast;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 324 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)

Additional, essential primitives for concurrent control fl ows:

• Entry families:
A protected entry declaration can contain
a discrete subtype selector, which can be evaluated by the barrier (other parameters
cannot be evaluated by barriers) and implements an array of protected entries.

• Requeue facility:
Protected operations can use ‘requeue’ to redirect tasks to other internal, external, or private
entries. The current protected operation is fi nished and the lock on the object is released.

‘Internal progress fi rst’-rule: external tasks are only considered for queuing
on barriers once no internally requeued task can be progressed any further!

• Private entries:
Protected entries which are not accessible from outside the protected
object, but can be employed as destinations for requeue operations.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 325 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Entry families)

package Modes is

 type Mode_T is
 (Takeoff, Ascent, Cruising,
 Descent, Landing);

 protected Mode_Gate is
 procedure Set_Mode (Mode: Mode_T);
 entry Wait_For_Mode (Mode_T);

 private
 Current_Mode : Mode_Type := Takeoff;
 end Mode_Gate;

end Modes;

package body Modes is

 protected body Mode_Gate is
 procedure Set_Mode
 (Mode: Mode_T) is

 begin
 Current_Mode := Mode;
 end Set_Mode;

 entry Wait_For_Mode
 (for Mode in Mode_T)
 when Current_Mode = Mode is

 begin null;
 end Wait_For_Mode;

 end Mode_Gate;

end Modes;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 326 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)

How to moderate the fl ow of incoming calls to a busy server farm?

 type Urgency is (urgent, not_so_urgent);
 type Server_Farm is (primary, secondary);

 protected Pre_Filter is
 entry Reception (U : Urgency);

 private
 entry Server (Server_Farm) (U : Urgency);
 end Pre_Filter;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 327 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Entry families, requeue & private entries)

 protected body Pre_Filter is

 entry Reception (U : Urgency)
 when Server (primary)’count = 0 or else Server (secondary)’count = 0 is

 begin

 If U = urgent and then Server (primary)’count = 0 then
 requeue Server (primary);

 else
 requeue Server (secondary);
 end if;

 end Reception;

 entry Server (for S in Server_Farm) (U : Urgency) when True is

 begin null; -- might try something even more useful
 end Server;

 end Pre_Filter;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 328 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Centralized synchronization

Synchronization by protected objects
(Restrictions for protected operations)

All code inside a protected procedure, function or entry is bound to non-blocking operations.

Thus the following operations are prohibited:

• entry call statements

• delay statements

• task creations or activations

• select statements

• accept statements

• … as well as calls to sub-programs which contain any of the above

 The requeue facility allows for a
potentially blocking operation,
and releases the current lock!

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 329 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Shared memory based synchronization

General

Criteria:

• Levels of abstraction

• Centralized versus distributed

• Support for automated (compiler based)
consistency and correctness validation

• Error sensitivity

• Predictability

• Effi ciency

329 f 758 (h t 3 “C i ti & S h i ti ” t 369)8

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 330 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Shared memory based synchronization

POSIX

• All low level constructs available

• Connection with the actual data-struc-
tures by means of convention only

• Extremely error-prone

• Degree of non-determinism intro-
duced by the ‘release some’ semantic

• ‘C’ based

• Portable

330 f 758 (h t 3 “C i ti & S h i ti ” t 369)8

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 331 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Shared memory based synchronization

Java

• Mutual exclusion available.

• General notifi cation feature (not
connected to other locks, hence
not a conditional variable)

• Universal object orientation makes
local analysis hard or even impossible

• Mixture of
high-level object oriented features and
low level concurrency primitives

331 f 758 (h t 3 “C i ti & S h i ti ” t 369)8

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 332 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Shared memory based synchronization

C#, Visual C++, Visual Basic

• Mutual exclusion via
library calls (convention)

• Data is associated with the
locks to protect it

• Condition variables related to
the data protection locks

• Mixture of
high-level object oriented features and
low level concurrency primitives

332 f 758 (h t 3 “C i ti & S h i ti ” t 369)8

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 333 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Shared memory based synchronization

C++14

• Mutual exclusion in scopes

• Data is not strictly associated
with the locks to protect it

• Condition variables related to
the mutual exclusion locks

• Set of essential primitives without combin-
ing them in a syntactically strict form (yet?)

333 f 758 (h t 3 “C i ti & S h i ti ” t 369)8

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regionsMonitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 334 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Shared memory based synchronization

Rust

• Mutual exclusion in scopes

• Data is strictly associated
with locks to protect it

• Condition variables related to
the mutual exclusion locks

• Combined with the message passing
semantics already a power set of tools.

• Concurrency features migrated
to a standard library.

334 f 758 (h t 3 “C i ti & S h i ti ” t 369)8

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion) Conditional
variables

Conditional critical
regionsMonitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 335 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Shared memory based synchronization

Modula-1, Chill, Parallel Pascal, …

• Full implementation of the
Dijkstra / Hoare monitor concept

The term monitor appears in many other
concurrent languages, yet it is usually not
associated with an actual language primitive.

335 f 758 (h t 3 “C i ti & S h i ti ” t 369)8

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 336 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Shared memory based synchronization

Ada

• High-level synchronization support
which scales to large size projects.

• Full compiler support
incl. potential deadlock analysis

• Low-Level semaphores for very special cases

Ada has still
no mainstream competitor

in the fi eld of explicit concurrency.
(2018)

336 f 758 (h t 3 “C i ti & S h i ti ” t 369)8

s

Semaphores
(atomic P, V ops)

Flags
(atomic word access)

Synchronized
methods

(mutual exclusion)
Conditional
variables

Conditional critical
regions

Monitors

Data structure
encapsulation

Protected objects

Guards (barriers)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 337 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

High Performance Computing

Synchronization in large scale concurrency
High Performance Computing (HPC) emphasizes on
keeping as many CPU nodes busy as possible:

 Avoid contention on sparse resources.

 Data is assigned to individual processes rather than processes synchronizing on data.

 Data integrity is achieved by keeping the CPU nodes in approximate “lock-step”,
yet there is still a need to re-sync concurrent entities.

Traditionally this has been implemented using the
Message Passing Interface (MPI) while implementing separate address spaces.

 Current approaches employ partitioned address spaces,
i.e. memory spaces can overlap and be re-assigned. Chapel, Fortress, X10.

 Not all algorithms break down into independent computation slices and so there is
a need for memory integrity mechanisms in shared/partitioned address spaces.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 338 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Current developments

Atomic operations in X10
X10 offers only atomic blocks in unconditional and conditional form.

• Unconditional atomic blocks are guaranteed to be non-blocking,
which means that they cannot be nested and need to be implemented using roll-backs.

• Conditional atomic blocks can also be used as a pure notifi cation system
(similar to the Java notify method).

• Parallel statements (incl. parallel, i.e. unrolled ‘loops’).

• Shared variables (and their access mechanisms) are not defi ned.

• The programmer does not specify the scope of the locks (atomic blocks)
but they are managed by the compiler/runtime environment.

 Code analysis algorithms are required in order to provide effi ciently,
otherwise the runtime environment needs to associate every atomic block with a global lock.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 339 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Current developments

Synchronization in Chapel
Chapel offers a variety of concurrent primitives:

• Parallel operations on data (e.g. concurrent array operations)

• Parallel statements (incl. parallel, i.e. unrolled ‘loops’)

• Parallelism can also be explicitly limited by serializing statements

• Atomic blocks for the purpose to construct atomic transactions

• Memory integrity needs to be programmed by means of synchronization statements
(waiting for one or multiple control fl ows to complete)
and/or atomic blocks

Further Chapel semantics are still forthcoming … so there is still hope for a
stronger shared memory synchronization / memory integrity construct.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 340 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Synchronization

Message-based synchronization

Synchronization model
• Asynchronous

• Synchronous

• Remote invocation

Addressing (name space)
• direct communication

• mail-box communication

Message structure
• arbitrary

• restricted to ‘basic’ types

• restricted to un-typed communications

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 341 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message protocols

Synchronous message
(sender waiting)

Delay the sender process until

• Receiver becomes available

• Receiver acknowledges reception

e 341 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8

send

receive

asyncronous

syncronoustime time

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 342 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message protocols

Synchronous message
(receiver waiting)

Delay the receiver process until

• Sender becomes available

• Sender concludes transmission

e 342 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8

send

receive

asyncronous

syncronoustime time

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 343 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message protocols

Asynchronous message

Neither the sender nor the receiver is blocked:

• Message is not transferred directly

• A buffer is required to store the messages

• Policy required for buffer sizes and
buffer overfl ow situations

e 343 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8

send

receive

asyncronous

syncronoustime time

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 344 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message protocols

Asynchronous message
(simulated by synchronous messages)

Introducing an intermediate process:

• Intermediate needs to be ac-
cepting messages at all times.

• Intermediate also needs to send
out messages on request.

 While processes are blocked in the sense of
synchronous message passing, they are not ac-
tually delayed as the intermediate is always ready.

e 344 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8

send

receive

time time

receive

send

time

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 345 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message protocols

Synchronous message
(simulated by asynchronous messages)

Introducing two asynchronous messages:

• Both processes voluntarily suspend them-
selves until the transaction is complete.

• As no immediate communication takes place,
the processes are never actually synchronized.

• The sender (but not the receiver) process
knows that the transaction is complete.

e 345 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8

send

receive

sendreceive

asyncronous

syncronoustime time

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 346 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message protocols

Remote invocation

• Delay sender or receiver
until the fi rst rendezvous point

• Pass parameters

• Keep sender blocked while
receiver executes the local procedure

• Pass results

• Release both processes out of the rendezvous

e 346 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8

invocation

results

asyncronous

syncronoustime time

remote
invocation

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 347 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message protocols

Remote invocation
(simulated by asynchronous messages)

• Simulate two synchronous messages

• Processes are never actually synchronized

e 347 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8

send

receive

sendreceive

sendreceive

send receive

asyncronous

syncronoustime time

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 348 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message protocols

Remote invocation (no results)

Shorter form of remote invocation which does
not wait for results to be passed back.

• Still both processes are actually
synchronized at the time of the invocation.

e 348 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8

invocation

asyncronous

syncronoustime time

remote
invocation

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 349 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message protocols

Remote invocation (no results)
(simulated by asynchronous messages)

• Simulate one synchronous message

• Processes are never actually synchronized

e 349 of 758 (chapter 3 “Comm nication & S nchroni ation” p to page 369)8

send

receive

sendreceive

asyncronous

syncronoustime time

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 350 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Synchronous vs. asynchronous communications

Purpose ‘synchronization’: synchronous messages / remote invocations
Purpose ‘last message(s) only’: asynchronous messages

 Synchronous message passing in distributed systems requires hardware support.

 Asynchronous message passing requires the usage of buffers and overfl ow policies.

Can both communication modes emulate each other?

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 351 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Synchronous vs. asynchronous communications

Purpose ‘synchronization’: synchronous messages / remote invocations
Purpose ‘last message(s) only’: asynchronous messages

 Synchronous message passing in distributed systems requires hardware support.

 Asynchronous message passing requires the usage of buffers and overfl ow policies.

Can both communication modes emulate each other?

• Synchronous communications are emulated by a combination of asynchronous messages
in some systems (not identical with hardware supported synchronous communication).

• Asynchronous communications can be emulated in
synchronized message passing systems by introducing a ‘buffer-task’
(de-coupling sender and receiver as well as allowing for broadcasts).

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 352 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Addressing (name space)

Direct versus indirect:
send <message> to <process-name>
wait for <message> from <process-name>
send <message> to <mailbox>
wait for <message> from <mailbox>

Asymmetrical addressing:
send <message> to …
wait for <message>

 Client-server paradigm

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 353 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Addressing (name space)

Communication medium:

Connections Functionality

one-to-one buffer, queue, synchronization

one-to-many multicast

one-to-all broadcast

many-to-one local server, synchronization

all-to-one general server, synchronization

many-to-many general network- or bus-system

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 354 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message structure

• Machine dependent representations need to be taken care of in a distributed environment.

• Communication system is often outside the typed language environment.

Most communication systems are handling streams (packets) of a basic element type only.

 Conversion routines for data-structures other then the basic element type are supplied …

… manually (POSIX, C)

… semi-automatic (CORBA)

… automatic (compiler-generated) and typed-persistent (Ada, CHILL, Occam2)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 355 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message structure (Ada)

package Ada.Streams is
 pragma Pure (Streams);
 type Root_Stream_Type is abstract tagged limited private;
 type Stream_Element is mod implementation-defined;
 type Stream_Element_Offset is range implementation-defined;

 subtype Stream_Element_Count is
 Stream_Element_Offset range 0..Stream_Element_Offset’Last;

 type Stream_Element_Array is
 array (Stream_Element_Offset range <>) of Stream_Element;

 procedure Read (…) is abstract;
 procedure Write (…) is abstract;

private
 … -- not specified by the language
end Ada.Streams;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 356 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message structure (Ada)
Reading and writing values of any subtype S of a specifi c type T to a Stream:

procedure S’Write (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : in T);

procedure S’Class’Write (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : in T’Class);

procedure S’Read (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : out T);

procedure S’Class’Read (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : out T’Class)

Reading and writing values, bounds and discriminants
of any subtype S of a specifi c type T to a Stream:

procedure S’Output (Stream : access Ada.Streams.Root_Stream_Type’Class;
 Item : in T);

function S’Input (Stream : access Ada.Streams.Root_Stream_Type’Class) return T;

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 357 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message-passing systems examples:

POSIX: “message queues”:
 ordered indirect [asymmetrical | symmetrical] asynchronous

byte-level many-to-many message passing
MPI: “message passing”:

 ordered [direct | indirect] [asymmetrical | symmetrical] asynchronous memory-block-
level [one-to-one | one-to-many | many-to-one | many-to-many] message passing

CHILL: “buffers”, ”signals”:
 ordered indirect [asymmetrical | symmetrical] [synchronous | asynchronous]

typed [many-to-many | many-to-one] message passing
Occam2: “channels”:

 ordered indirect symmetrical synchronous fully-typed one-to-one message passing
Ada: “(extended) rendezvous”:

 ordered direct asymmetrical [synchronous | asynchronous]
fully-typed many-to-one remote invocation

Java: no message passing system defi ned

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 358 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message-passing systems examples:
o

rd
er

ed

sy
m

m
et

ri
ca

l

as
ym

m
et

ri
ca

l

sy
n

ch
ro

n
o

u
s

as
yn

ch
ro

n
o

u
s

d
ir

ec
t

in
d

ir
ec

t
contents o

n
e-

to
-o

n
e

m
an

y-
to

-o
n

e

m
an

y-
to

-m
an

y

method
POSIX: byte-stream message queues

MPI: memory-blocks message passing
CHILL: basic types message passing

Occam2: fully typed message passing
Ada: fully typed remote invocation
Go: fully typed channels

Erlang: fully typed message passing
Java: no message passing system defi ned

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 359 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:
PAR
 INT reading:
 SEQ i = 0 FOR 1000
 SEQ
 -- generate reading
 SensorChannel ! reading
 INT data:
 SEQ i = 0 FOR 1000
 SEQ
 SensorChannel ? data
 -- employ data

concurrent entities are

synchronized at these points
g

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 360 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message-based synchronization in Occam2
Communication is ensured by means of a ‘channel’, which:

• can be used by one writer and one reader process only

• and is synchronous:

CHAN OF INT SensorChannel:
PAR
 INT reading:
 SEQ i = 0 FOR 1000
 SEQ
 -- generate reading
 SensorChannel ! reading
 INT data:
 SEQ i = 0 FOR 1000
 SEQ
 SensorChannel ? data
 -- employ data

Essential Occam2 keywords

ALT PAR SEQ PRI

ANY CHAN OF

DATA TYPE RECORD OFFSETOF PACKED

BOOL BYTE INT REAL

CASE IF ELSE FOR FROM WHILE

FUNCTION RESULT PROC IS

PROCESSOR PROTOCOL TIMER

SKIP STOP VALOF
a

page 360 of 758 (chapter 3: “Communication & Synchronization” up to page 369)8
 Concurrent, distributed, real-time programming language!

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 361 of 758 (chapter 3: “Communication & Synchronization” up to page 369)© 2020 Uwe R. Zimmer, The Australian National University page 361 ofy 758 (chapter 3: Communication & Synchronization up to page 369)8©©©©©©© 20202020202020202020 UUUUUwewe RRRRR iZiZiZiZiZimmmmerer hThThThThThee AAAAAuAu ttststraralilililililianan NNNNNN ttatatiiiiioionanallllll UUUUnUniiiiiviverer iiiisisitttyty ppagagee 363636363611111 ffffofofyy 57575757588888 (((((c(chhhhhaha ttptpterer 33333:: “C“C“C“C“CComommumu iiiininicaca iititititionon &&&&& SSSSSSynyn hhhhchchroro iiiininizaza iititititionon””””” upup ttttoo papagege 333336969696969))))))88888

Message-based synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,

where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.

The CHILL language development was started in 1973 and standardized in 1979.
 strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;

…
send SensorBuffer (reading);

receive case
 (SensorBuffer in data) : …
esac;

send SensorChannel (reading)
 to consumer

receive case
 (SensorChannel in data): …
esac;

signal SensorChannel = (int) to consumertype;
…

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 362 of 758 (chapter 3: “Communication & Synchronization” up to page 369)© 2020 Uwe R. Zimmer, The Australian National University page 362 ofy 758 (chapter 3: Communication & Synchronization up to page 369)8©©©©©©© 20202020202020202020 UUUUUwewe RRRRR iZiZiZiZiZimmmmerer hThThThThThee AAAAAuAu ttststraralilililililianan NNNNNN ttatatiiiiioionanallllll UUUUnUniiiiiviverer iiiisisitttyty ppagagee 363636363622222 ffffofofyy 57575757588888 (((((c(chhhhhaha ttptpterer 33333:: “C“C“C“C“CComommumu iiiininicaca iititititionon &&&&& SSSSSSynyn hhhhchchroro iiiininizaza iititititionon””””” upup ttttoo papagege 333336969696969))))))88888

Message-based synchronization

Message-based synchronization in CHILL
CHILL is the ‘CCITT High Level Language’,

where CCITT is the Comité Consultatif International Télégraphique et Téléphonique.

The CHILL language development was started in 1973 and standardized in 1979.
 strong support for concurrency, synchronization, and communica-
tion (monitors, buffered message passing, synchronous channels)

dcl SensorBuffer buffer (32) int;

…
send SensorBuffer (reading);

receive case
 (SensorBuffer in data) : …
esac;

send SensorChannel (reading)
 to consumer

receive case
 (SensorChannel in data): …
esac;

signal SensorChannel = (int) to consumertype;
…

((rrrrrrreeeeeeeaaaaaaadddddddiiiiiiinnnnnnnggggggg (((((((((((SS))))));););;asynchronous

 (((((((((((SSsynchronous

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 363 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message-based synchronization in Ada

Ada supports remote invocations ((extended) rendezvous) in form of:

• entry points in tasks

• full set of parameter profi les supported

If the local and the remote task are on different architectures,
or if an intermediate communication system is employed then:

 parameters incl. bounds and discriminants are ‘tunnelled’ through byte-stream-formats.

Synchronization:

• Both tasks are synchronized at the beginning of the remote invocation (‘rendezvous’)

• The calling task if blocked until the remote routine is completed (‘extended rendezvous’)

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 364 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message-based synchronization in Ada
(Rendezvous)

<entry_name> [(index)] <parameters>
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ accept <entry_name> [(index)]

 <parameter_profile>;
--- aaasynchronized

©©©©©©©©© 22220

<<

time time

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 365 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message-based synchronization in Ada
(Extended rendezvous)

<entry_name> [(index)] <parameters>
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization

 ------ blocked
 ------ blocked
 ------ blocked
 ------ blocked

 accept <entry_name> [(index)]
 <parameter_profile> do
 ------ remote invocation
 ------ remote invocation
 ------ remote invocation
 end <entry_name>;

bl k d

 aaa

--- ee

synchronized

return results

©©©©©©©©© 22220

<<

time time

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 366 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message-based synchronization in Ada
(Rendezvous)

<entry_name> [(index)] <parameters>

 accept <entry_name> [(index)]
 <parameter_profile>;
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization

synchronized

©©©©©©©©© 22220

<<

time time

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 367 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message-based synchronization in Ada
(Extended rendezvous)

<entry_name> [(index)] <parameters>
 ------ blocked
 ------ blocked
 ------ blocked
 ------ blocked

 accept <entry_name> [(index)]
 <parameter_profile>;
 ------ waiting for synchronization
 ------ waiting for synchronization
 ------ waiting for synchronization

 ------ remote invocation
 ------ remote invocation
 ------ remote invocation
 ------ remote invocation
 end <entry_name>;

tt------------ rrrrreeeeemmmmmoooooooooottttttttttttttttttt
synchronized

©©©©©©©©© 22220

<<

time time

 ee --- return results

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 368 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Message-based synchronization

Message-based synchronization in Ada

Some things to consider for task-entries:

• In contrast to protected-object-entries, task-entry bodies can call other blocking operations.

• Accept statements can be nested (but need to be different).

 helpful e.g. to synchronize more than two tasks.

• Accept statements can have a dedicated exception handler (like any other code-block).

Exceptions, which are not handled during the rendezvous
phase are propagated to all involved tasks.

• Parameters cannot be direct ‘access’ parameters, but can be access-types.

• ‘count on task-entries is defi ned,
but is only accessible from inside the tasks which owns the entry.

• Entry families (arrays of entries) are supported.

• Private entries (accessible for internal tasks) are supported.

Communication & Synchronization

© 2020 Uwe R. Zimmer, The Australian National University page 369 of 758 (chapter 3: “Communication & Synchronization” up to page 369)

Summary

Communication & Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores,
conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks,
simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models

• Addressing modes

• Message structures

• Examples

